{"title":"Water/fat separate reconstruction for body quantitative susceptibility mapping in MRI.","authors":"Hirohito Kan, Masahiro Nakashima, Takahiro Tsuchiya, Masato Yamada, Akio Hiwatashi","doi":"10.1007/s12194-024-00878-8","DOIUrl":"10.1007/s12194-024-00878-8","url":null,"abstract":"<p><p>This study aimed to investigate the cause of susceptibility underestimation in body quantitative susceptibility mapping (QSM) and propose a water/fat separate reconstruction to address this issue. A numerical simulation was conducted using conventional QSM with/without body masking. The conventional method with body masking underestimated the susceptibility across all regions, whereas the method without body masking estimated an equivalent value to the ground truth. Additional numerical simulations and human experiments were conducted to compare the water/fat separate reconstruction, which separately reconstructs water and fat susceptibility maps based on the water/fat separation, with conventional QSM with body masking. The proposed method improved susceptibility estimation specifically in only the water tissue. The results of the human experiments were consistent with those of the numerical simulations. The lack of phase information outside the body contributed to susceptibility underestimation in conventional QSM. The developed method addressed susceptibility underestimation only in water tissue in body QSM.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"320-328"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of gravity effect on liver and spleen volumes using multiposture MRI.","authors":"Seiya Nakagawa, Tosiaki Miyati, Naoki Ohno, Yuki Oda, Haruka Kashiwagi, Satoshi Kobayashi","doi":"10.1007/s12194-024-00870-2","DOIUrl":"10.1007/s12194-024-00870-2","url":null,"abstract":"<p><p>Liver and spleen volume measurements are important for early detection and monitoring of liver disease. However, alterations in liver and spleen volumes with postural changes, i.e., the different effects of gravity, remain unclear. This study aims to evaluate the effects of posture on the liver and spleen in the supine and upright positions with an original magnetic resonance imaging (MRI) system capable of imaging in any posture (multiposture MRI). The liver and spleen volumes were assessed in ten healthy volunteers (age range: 20-24 years) in the supine and upright positions with multiposture MRI (0.4 T) and compared between postures. The liver and spleen volumes were significantly smaller in the upright position than in the supine position (P < 0.05 for both). Multiposture MRI offers more detailed information on liver and spleen volumes.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"316-319"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142956305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiomics and dosiomics approaches to estimate lung function after stereotactic body radiation therapy in patients with lung tumors.","authors":"Yoshiro Ieko, Noriyuki Kadoya, Shohei Tanaka, Koyo Kikuchi, Takaya Yamamoto, Hisanori Ariga, Keiichi Jingu","doi":"10.1007/s12194-024-00877-9","DOIUrl":"10.1007/s12194-024-00877-9","url":null,"abstract":"<p><p>Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included. Models were created to estimate the PFT results at 0-6 months (Cohort 1) and 6-24 months (Cohort 2) after SBRT. Radiomics and dosiomics features were extracted from the computed tomography (CT) images and dose distributions, respectively. To estimate the PFT results, Models A (dose-volume histogram [DVH] + radiomics features) and B (DVH + radiomics + dosiomics features) were created. In the PFT results, the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were estimated using each model, and the ratio of FEV1 to FVC (FEV1/FVC) was calculated. The Pearson's correlation coefficient (Pearson r) and area under the curve (AUC) for FEV1/FVC (< 70%) were calculated. The models were evaluated by comparing them with the conventional calculation formulae (Conventional). The Pearson r (FEV1/FVC) values were 0.30, 0.64, and 0.69 for Conventional and Models A and B (Cohort 2), respectively, and the AUC (FEV1/FVC < 70%) values were 0.63, 0.80, and 0.78, respectively. This study demonstrates the possibility of estimating lung function after SBRT using radiomics and dosiomics features based on planning CT images and dose distributions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"238-248"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast cancer classification based on breast tissue structures using the Jigsaw puzzle task in self-supervised learning.","authors":"Keisuke Sugawara, Eichi Takaya, Ryusei Inamori, Yuma Konaka, Jumpei Sato, Yuta Shiratori, Fumihito Hario, Tomoya Kobayashi, Takuya Ueda, Yoshikazu Okamoto","doi":"10.1007/s12194-024-00874-y","DOIUrl":"10.1007/s12194-024-00874-y","url":null,"abstract":"<p><p>Self-supervised learning (SSL) has gained attention in the medical field as a deep learning approach utilizing unlabeled data. The Jigsaw puzzle task in SSL enables models to learn both features of images and the positional relationships within images. In breast cancer diagnosis, radiologists evaluate not only lesion-specific features but also the surrounding breast structures. However, deep learning models that adopt a diagnostic approach similar to human radiologists are still limited. This study aims to evaluate the effectiveness of the Jigsaw puzzle task in characterizing breast tissue structures for breast cancer classification on mammographic images. Using the Chinese Mammography Database (CMMD), we compared four pre-training pipelines: (1) IN-Jig, pre-trained with both the ImageNet classification task and the Jigsaw puzzle task, (2) Scratch-Jig, pre-trained only with the Jigsaw puzzle task, (3) IN, pre-trained only with the ImageNet classification task, and (4) Scratch, that is trained from random initialization without any pre-training tasks. All pipelines were fine-tuned using binary classification to distinguish between the presence or absence of breast cancer. Performance was evaluated based on the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Additionally, detailed analysis was conducted for performance across different radiological findings, breast density, and regions of interest were visualized using gradient-weighted class activation mapping (Grad-CAM). The AUC for the four models were 0.925, 0.921, 0.918, 0.909, respectively. Our results suggest the Jigsaw puzzle task is an effective pre-training method for breast cancer classification, with the potential to enhance diagnostic accuracy with limited data.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"209-218"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of image shoot timing for cerebral veins 3D-digital subtraction angiography by interventional angiography systems.","authors":"Kazuya Saeki, Takayuki Tamura, Shingo Kouno, Eiji Nishimaru, Masao Kiguchi, Takafumi Mitsuhara, Kazuo Awai","doi":"10.1007/s12194-024-00852-4","DOIUrl":"10.1007/s12194-024-00852-4","url":null,"abstract":"<p><p>3D-digital subtraction angiography (3D-DSA) is essential for understanding the anatomical structure of cerebral veins, crucial in brain tumor surgery. 3D-DSA produces three-dimensional images of veins by adjusting the X-ray delay time after contrast agent injection, but the delineation of veins varies with the delay in X-ray timing. Our study aimed to refine the delay time using time-enhancement curve (TEC) analysis from 2D-DSA conducted before 3D-DSA imaging. We retrospectively reviewed 26 meningioma patients who underwent cerebral angiography from March 2020 to August 2021. Using 2D-DSA, we analyzed arterial and venous TECs to determine the contrast agent's peak time and estimated the optimal imaging timing. Cases performed near this optimal time were in Group A, and others in Group B, with cerebral venous pixel values compared between them. TEC analysis identified peak times: internal carotid artery: 2.8 ± 0.7 s, middle cerebral artery (M4): 4.1 ± 0.9 s, superior sagittal sinus: 8.3 ± 1.1 s, sigmoid sinus: 9.5 ± 1.3 s, and venous structures near tumors: 7.3 ± 1.0 s. We observed several veins peaking immediately after arterial contrast passage, suggesting the optimal X-ray delay should incorporate the arterial contrast agent's transit time. Statistical analysis revealed that Group A, with imaging timed to reflect the contrast agent transit time, demonstrated significantly better contrast effects than Group B. The X-ray delay time for 3D-DSA imaging of cerebral veins can be optimized in angiography systems by incorporating the contrast agent transit time, calculated from TEC analysis of cerebral 2D-DSA images.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"36-46"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization of X-ray fields, overlaps, and over-beaming on surface of the head in spiral computed tomography using computer-aided design-based X-ray beam modeling.","authors":"Atsushi Fukuda, Nao Ichikawa, Takuma Hayashi, Ayaka Hirosawa, Kosuke Matsubara","doi":"10.1007/s12194-024-00849-z","DOIUrl":"10.1007/s12194-024-00849-z","url":null,"abstract":"<p><p>To visualize the X-ray fields, overlaps, and over-beaming on the skin surface during spiral head CT scanning. The measured pitch factors were determined by measuring 3 rotation times, 11 table-feed speeds, and an X-ray beam width. The X-ray fields, overlaps, and over-beaming on the skin surface were calculated via computer-aided design-based X-ray beam modeling, and the values obtained using the nominal pitch and measured pitch factors were compared. The X-ray fields with measured pitch factors exceeded those with nominal pitch factors. The overlaps increased with a decrease in the nominal pitch and measured pitch factors and were observed even at a nominal pitch factor of 1.0. The most stretched over-beaming field was observed with the measured pitch factor of 0.670. The technique can show the overlaps of the X-ray fields and may determine the adequate start angle to prevent overlaps to the eye lens.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"287-292"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142477343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y Retna Ponmalar, Ravikumar Manickam, Henry Finlay Godson, Kadirampatti Mani Ganesh, Sathiyan Saminathan, Varatharaj Chandraraj, Arun Raman
{"title":"Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter.","authors":"Y Retna Ponmalar, Ravikumar Manickam, Henry Finlay Godson, Kadirampatti Mani Ganesh, Sathiyan Saminathan, Varatharaj Chandraraj, Arun Raman","doi":"10.1007/s12194-025-00883-5","DOIUrl":"10.1007/s12194-025-00883-5","url":null,"abstract":"<p><p>The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge. The PD measurements were carried out at 13 locations starting from 1.5 cm to 20.8 cm from radiation field edge for three different field sizes at three different depths with 6 and 18 MV photon beams. In addition, the measurements were carried out to analyze the response in PD due to the presence of wedge. The %PD decreases gradually with an increase in distance from the radiation field edge. The %PD at surface for 10 × 10cm<sup>2</sup> with 6MV photon beams was 6.77 ± 0.32% and 1.0 ± 0.04% at 1.5 cm and 20.8 cm away from field edge. For 20 × 20 cm<sup>2</sup> field, %PD was found to be much higher at surface than at 5 cm depth for all distances from field edge. This study demonstrates the suitability of OSLD for PD assessment in megavoltage photon beams. The PD increases as field size increases, primarily due to greater amount of out-of-field scatter generated by larger surface area of the collimator defining the larger field size. An enhancement in PD was observed with wedge when the thick end was oriented towards the OSLDs. This study assessed PD that would be a risk factor of the normal tissue complication and secondary cancer induction.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"275-286"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can bile excretion on Gd-EOB-MRI be used as a visual criterion for the hepatobiliary phase?","authors":"Masafumi Nakamura, Yasuo Takatsu, Mutsumi Yoshizawa, Satoshi Kobayashi, Tosiaki Miyati","doi":"10.1007/s12194-024-00868-w","DOIUrl":"10.1007/s12194-024-00868-w","url":null,"abstract":"<p><p>To determine whether visually observed biliary excretion of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) can be used to assess contrast adequacy of hepatobiliary phase (HBP) images. Images of 121 patients undergoing Gd-EOB-DTPA-enhanced magnetic resonance imaging were used. Adequate HBP images were defined as a quantitative liver-spleen contrast ratio (Q-LSC) ≥ 1.5. Visual evaluation was performed to determine if an adequate HBP image could be obtained based on the presence or absence of bile excretion. Common bile duct-paravertebral contrast (CPC) was used to assess the degree of bile excretion, the albumin-bilirubin (ALBI) grade was used to assess liver reserve, and the Q-LSC was used to assess HBP image contrast. The results were used to quantitatively evaluate the relationships of the degree of bile excretion with HBP image contrast and liver reserve. The cases correctly determined by visual evaluation via bile excretion were 80 (66.1%) at HBP 10 min after injection and 89 (73.6%) at HBP 20 min after injection. Among cases with Q-LSC ≥ 1.5 indicating bile excretion, there were 33 cases at HBP 10 min after injection and 86 cases at HBP 20 min after injection. Furthermore, among cases with Q-LSC < 1.5, indicating no bile excretion, there were 47 cases at HBP 10 min after injection and 3 cases at HBP 20 min after injection. Visually observed biliary excretion of Gd-EOB-DTPA is not a criterion for adequate HBP image contrast.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"147-156"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing the planning process in computed tomography-based image-guided adaptive brachytherapy for cervical cancer using a spreadsheet-based daily dose management system.","authors":"Jun Takatsu, Takahito Chiba, Naoya Murakami, Kotaro Iijima, Tatsuya Inoue, Noriyuki Okonogi, Yoichi Muramoto, Terufumi Kawamoto, Tatsuki Karino, Hiroyuki Okamoto, Satoshi Nakamura, Hiroki Nakayama, Yasuhisa Terao, Naoto Shikama","doi":"10.1007/s12194-024-00867-x","DOIUrl":"10.1007/s12194-024-00867-x","url":null,"abstract":"<p><p>This study developed a system to reduce the treatment planning time for cervical cancer brachytherapy. An in-house Excel spreadsheet was developed to streamline dosimetric evaluation by combining external beam radiotherapy and brachytherapy doses, while also displaying daily dose constraints, a novel feature of the system. This system was validated in 46 consecutive patients who underwent intracavitary and interstitial brachytherapy using several applicators and required more complex dose calculation procedures than intracavitary brachytherapy alone. The proposed system included contouring and catheter reconstruction using multiple treatment planning systems simultaneously and was integrated with Excel spreadsheets for rapid dosimetric evaluation. The median time required for treatment planning was 36 min (range: 12-72 min), which was a much shorter time than those reported previously. This optimized system demonstrated the potential to increase the efficiency of brachytherapy planning to meet prescribed dose constraints without compromising treatment quality.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"329-336"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi
{"title":"Tuning the range-energy relationship parameter for Monte Carlo-based proton Bragg curve spreading in muscle, bone, and polymethylmethacrylate.","authors":"Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi","doi":"10.1007/s12194-024-00864-0","DOIUrl":"10.1007/s12194-024-00864-0","url":null,"abstract":"<p><p>Determination of spread-out Bragg peak (SOBP) inside media other than water is important for research or clinical purposes. Current study aims to characterize the optimal \"p\" values needed for the simulation of proton SOBP inside some dosimetry media using MCNPX Monte Carlo code. Following the provided data by ICRU-49 and applying the Bortfeld and Jette recommendations, the \"p\" values were determined for muscle, compact bone, and PMMA. Then, \"p\" values were optimized to reach accurate weight fractions for the Monte Carlo simulation of SOBP curves. Obtained optimal \"p\" values can produce accurate proton weight fractions for flat SOBP simulation. The slope of the SOBP region was highly dependent on the \"p\" value, so small changes in this parameter can largely tilt up or down the SOBP. The tabulated optimal \"p\" values can be reliably used for proton weight fraction determination during the Monte Carlo simulation of the proton beam SOBP curve inside the investigated media.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"300-307"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}