{"title":"Can bile excretion on Gd-EOB-MRI be used as a visual criterion for the hepatobiliary phase?","authors":"Masafumi Nakamura, Yasuo Takatsu, Mutsumi Yoshizawa, Satoshi Kobayashi, Tosiaki Miyati","doi":"10.1007/s12194-024-00868-w","DOIUrl":"10.1007/s12194-024-00868-w","url":null,"abstract":"<p><p>To determine whether visually observed biliary excretion of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) can be used to assess contrast adequacy of hepatobiliary phase (HBP) images. Images of 121 patients undergoing Gd-EOB-DTPA-enhanced magnetic resonance imaging were used. Adequate HBP images were defined as a quantitative liver-spleen contrast ratio (Q-LSC) ≥ 1.5. Visual evaluation was performed to determine if an adequate HBP image could be obtained based on the presence or absence of bile excretion. Common bile duct-paravertebral contrast (CPC) was used to assess the degree of bile excretion, the albumin-bilirubin (ALBI) grade was used to assess liver reserve, and the Q-LSC was used to assess HBP image contrast. The results were used to quantitatively evaluate the relationships of the degree of bile excretion with HBP image contrast and liver reserve. The cases correctly determined by visual evaluation via bile excretion were 80 (66.1%) at HBP 10 min after injection and 89 (73.6%) at HBP 20 min after injection. Among cases with Q-LSC ≥ 1.5 indicating bile excretion, there were 33 cases at HBP 10 min after injection and 86 cases at HBP 20 min after injection. Furthermore, among cases with Q-LSC < 1.5, indicating no bile excretion, there were 47 cases at HBP 10 min after injection and 3 cases at HBP 20 min after injection. Visually observed biliary excretion of Gd-EOB-DTPA is not a criterion for adequate HBP image contrast.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"147-156"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing the planning process in computed tomography-based image-guided adaptive brachytherapy for cervical cancer using a spreadsheet-based daily dose management system.","authors":"Jun Takatsu, Takahito Chiba, Naoya Murakami, Kotaro Iijima, Tatsuya Inoue, Noriyuki Okonogi, Yoichi Muramoto, Terufumi Kawamoto, Tatsuki Karino, Hiroyuki Okamoto, Satoshi Nakamura, Hiroki Nakayama, Yasuhisa Terao, Naoto Shikama","doi":"10.1007/s12194-024-00867-x","DOIUrl":"10.1007/s12194-024-00867-x","url":null,"abstract":"<p><p>This study developed a system to reduce the treatment planning time for cervical cancer brachytherapy. An in-house Excel spreadsheet was developed to streamline dosimetric evaluation by combining external beam radiotherapy and brachytherapy doses, while also displaying daily dose constraints, a novel feature of the system. This system was validated in 46 consecutive patients who underwent intracavitary and interstitial brachytherapy using several applicators and required more complex dose calculation procedures than intracavitary brachytherapy alone. The proposed system included contouring and catheter reconstruction using multiple treatment planning systems simultaneously and was integrated with Excel spreadsheets for rapid dosimetric evaluation. The median time required for treatment planning was 36 min (range: 12-72 min), which was a much shorter time than those reported previously. This optimized system demonstrated the potential to increase the efficiency of brachytherapy planning to meet prescribed dose constraints without compromising treatment quality.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"329-336"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi
{"title":"Tuning the range-energy relationship parameter for Monte Carlo-based proton Bragg curve spreading in muscle, bone, and polymethylmethacrylate.","authors":"Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi","doi":"10.1007/s12194-024-00864-0","DOIUrl":"10.1007/s12194-024-00864-0","url":null,"abstract":"<p><p>Determination of spread-out Bragg peak (SOBP) inside media other than water is important for research or clinical purposes. Current study aims to characterize the optimal \"p\" values needed for the simulation of proton SOBP inside some dosimetry media using MCNPX Monte Carlo code. Following the provided data by ICRU-49 and applying the Bortfeld and Jette recommendations, the \"p\" values were determined for muscle, compact bone, and PMMA. Then, \"p\" values were optimized to reach accurate weight fractions for the Monte Carlo simulation of SOBP curves. Obtained optimal \"p\" values can produce accurate proton weight fractions for flat SOBP simulation. The slope of the SOBP region was highly dependent on the \"p\" value, so small changes in this parameter can largely tilt up or down the SOBP. The tabulated optimal \"p\" values can be reliably used for proton weight fraction determination during the Monte Carlo simulation of the proton beam SOBP curve inside the investigated media.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"300-307"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Visualization of X-ray fields, overlaps, and over-beaming on surface of the head in spiral computed tomography using computer-aided design-based X-ray beam modeling.","authors":"Atsushi Fukuda, Nao Ichikawa, Takuma Hayashi, Ayaka Hirosawa, Kosuke Matsubara","doi":"10.1007/s12194-024-00863-1","DOIUrl":"10.1007/s12194-024-00863-1","url":null,"abstract":"","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"346"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of effective dose and risk of exposure-induced cancer death, and diagnostic reference level for CT scans in Tabriz, Iran.","authors":"Hamed Zamani, Maedeh Yektamanesh, Fatemeh Shiridokht, Soheila Sharifian Jazi, Reza Javadrashid, Amir Ghasemi Jangjoo, Mikaeil Molazadeh, Alireza Farajollahi, Tohid Mortezazadeh","doi":"10.1007/s12194-024-00872-0","DOIUrl":"10.1007/s12194-024-00872-0","url":null,"abstract":"<p><p>This study aimed to estimate the effective dose and the risk of exposure-induced cancer death (REID), as well as to establish diagnostic reference levels (DRLs) for common CT examinations conducted in Tabriz, Iran. The investigation included adult patients undergoing abdomen-pelvis, brain, neck, sinus, and chest CT scans. Patient data, exposure parameters, and radiation dose metrics, such as volume CT dose index (CTDI<sub>vol</sub>) and dose length product (DLP), were collected and analyzed. The results showed significant variations in radiation dose across different centers for the CT scans. The average effective doses for the different CT scans were 5.65, 1.08, 1.40, 0.46, and 3.68 mSv for abdomen-pelvis, brain, neck, sinus, and chest scans, respectively. The REID values ranged from 14 per million (for sinus scans) to 196 per million (for abdomen-pelvis scans). Additionally, the DRL values for CTDIvol were 11.03 (for abdomen-pelvis), 59.52 (for brain), 8.33 (for neck), 17.05 (for sinus), and 7.83 mGy (for chest). Our results showed that most of the investigated CT scans had lower effective doses compared to the literature and the REIDs were estimated to be low. Minimizing radiation risk can be achieved by reducing CT exams and keeping doses as low as reasonably achievable. The local DRLs from this study were comparable to previous reports and can serve as benchmarks for setting national and international DRLs, helping healthcare facilities optimize radiation practices and improve patient safety in diagnostic imaging.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"186-195"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dosimetric impact of arc simulation angular resolution in single-isocentre multi-target stereotactic radiosurgery.","authors":"Perumal Murugan, Ravikumar Manickam, Tamilarasan Rajamanickam, Sivakumar Muthu, C Dinesan, Karthik Appunu, Abishake Murali","doi":"10.1007/s12194-024-00876-w","DOIUrl":"10.1007/s12194-024-00876-w","url":null,"abstract":"<p><p>This study evaluates the dosimetric impact of arc simulation angular resolution in VMAT-based Single Isocentre Multiple Target (SIMT) SRS, focusing on their dependence on target size, isocentre distance, number of arcs, and arc type. A phantom study analysed angular resolution (0.5°, 1°, 2°) effects on dosimetric accuracy for PTVs of 0.5 cm, 1 cm, and 2 cm at distances of 2.5 cm, 5 cm, and 7.5 cm from the isocentre using conformal arc and VMAT plans. Clinical validation involved 32 patients with 2-8 brain metastases, comparing plans recalculated at 1° and 2° resolutions. Dosimetric parameters included: D<sub>near-Min</sub>, D<sub>near-Max</sub>, D<sub>mean</sub>, D<sub>median</sub>, TV<sub>PIV</sub>, CI<sub>Paddick</sub>, GI, and Brain-GTV 12 Gy. For the 0.5 cm diameter target located at 7.5 cm distance from isocentre, phantom results showed TV<sub>PIV</sub>, D<sub>mean</sub>, and GI deviations of 7.91%, 1.8%, and 0.85 for single-conformal arcs, which decreased to 4.84%, 1.3%, and 0.77 with 4-conformal arcs, and 3.4%, 0.96%, and 0.5 for 4-arc VMAT. Deviations varied based on target size, isocentre distance, number of arcs, and arc type. Clinical results mirrored the phantom study, with maximum TV<sub>PIV</sub> and GI deviations of 2.76% and 0.65 for the smallest target (0.6 cm) located at 7.5 cm distance for four-arc VMAT. Other dosimetric parameters showed minimal variations (< 1%). Correlation analysis revealed strong associations between dosimetric differences, target size, and distance (r = 0.6-0.78 for small targets). MANOVA identified TV<sub>PIV</sub> as the only significant parameter (p = 0.01). A 1° angular resolution significantly improves dosimetric accuracy for small, distally located targets in SIMT SRS.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"227-237"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive image quality comparison of conventional and new flat panel detectors under bedside chest radiography beam conditions.","authors":"Sho Maruyama, Hiroki Saitou","doi":"10.1007/s12194-024-00859-x","DOIUrl":"10.1007/s12194-024-00859-x","url":null,"abstract":"<p><p>Recently, a novel wireless flat-panel detector with auto-exposure control has become available. This study aimed to elucidate the potential advantages of the new detector over conventional detectors through a comprehensive analysis of the physical image quality characteristics. Measurements were conducted on two models: new (720C) and conventional (710C) versions; this assessment was performed by assuming the beam quality for bedside chest radiography, utilizing a portable device for X-ray exposure. The detective quantum efficiency (DQE) was computed based on the presampled modulation transfer function (MTF) and normalized noise power spectrum. The validity of the DQE results was verified through the visualization of the analog blurring components and a detailed analysis of the noise components. The spatial frequency at which the presampled MTF value reached 10% was 5.2 cycles/mm for 720C and 3.9 cycles/mm for 710C. The full width at half-maximum of the spatial spreading of analog components was estimated at 0.09 mm for 720C and 0.14 mm for 710C by the visualization. Regarding the DQE, 720C was superior under low-dose conditions despite no significant differences being observed under high-dose conditions. The new detector demonstrated superior resolution characteristics compared with the conventional detector and an improvement in the DQE under low-dose conditions. However, similar to the conventional detector, a significant dose dependence caused by a structural factor was confirmed for the DQE. These results suggest the existence of an appropriate dose range for maximizing detector performance and provide insights crucial for optimization tasks in the X-ray imaging.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"94-103"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of image reconstruction technique for respiratory-gated lung stereotactic body radiotherapy treatment planning using four-dimensional CT: a phantom study.","authors":"Kenji Yasue, Hiraku Fuse, Minori Takaoka, Shin Miyakawa, Norikazu Koori, Masato Takahashi, Kazuya Shinoda, Hideaki Ikoma, Tatsuya Fujisaki, Shinji Abe","doi":"10.1007/s12194-024-00850-6","DOIUrl":"10.1007/s12194-024-00850-6","url":null,"abstract":"<p><p>Patient respiration is characterized by respiratory parameters, such as cycle, amplitude, and baseline drift. In treatment planning using four-dimensional computed tomography (4DCT) images, the target dose may be affected by variations in image reconstruction techniques and respiratory parameters. This study aimed to optimize 4DCT image reconstruction techniques for the treatment planning of lung stereotactic body radiotherapy (SBRT) based on respiratory parameters using respiratory motion phantom. We quantified respiratory parameters using 30 respiratory motion datasets. The 4DCT images were acquired, and the phase- and amplitude-based reconstruction images (RI) were created. The target dose was calculated based on these reconstructed images. Statistical analysis was performed using Pearson's correlation coefficient (r) to determine the relationship between respiratory parameters and target dose in each reconstructed technique and respiratory region. In the inhalation region of phase-based RI, r of the target dose and baseline drift was -0.52. In particular, the target dose was significantly reduced for respiratory parameters with a baseline drift of 0.8 mm/s and above. No other respiratory parameters or respiratory regions were significantly correlated with target dose in phase-based RI. In amplitude-based RI, there were no significant differences in the correlation between all respiratory parameters and target dose in the exhalation or inhalation regions. These results showed that the target dose of the amplitude-based RI did not depend on changes in respiratory parameters or respiratory regions, compared to the phase-based RI. However, it is possible to guarantee the target dose by considering respiratory parameters during the inhalation region of the phase-based RI.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"27-35"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142477342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of uterine displacement on T<sub>2</sub>-weighted image quality in the female pelvic MRI.","authors":"Hironobu Ishikawa, Masahiko Monma, Yoshiyuki Ishimori, Kousaku Saotome, Shiro Ishii, Hirofumi Sekino, Ryo Yamakuni, Takeyasu Kakamu, Daisuke Oura, Yuma Takahashi, Shinya Seino, Masanori Yusa, Hiroshi Ito","doi":"10.1007/s12194-024-00861-3","DOIUrl":"10.1007/s12194-024-00861-3","url":null,"abstract":"<p><p>Despite the importance of T<sub>2</sub>-weighted image in clinical practice, artifacts can significantly degrade image quality and affect diagnosis. This study quantitatively analyzed uterine displacement and surveyed the relationship between the image quality of fast-spin-echo-T<sub>2</sub>-weighted image of the female pelvis and quantitative value of uterine displacement. Overall, 147 women (mean age, 46.0 ± 12.8 years; age range, 22-84 years) who had undergone pelvic magnetic resonance imaging examination using a 3 T- magnetic resonance imaging scanner were included. Two radiologists performed a visual assessment of the fast-spin-echo-T<sub>2</sub>-weighted image in the sagittal plane in terms of ghosts and motion blur, and classified the image quality into the following three groups: poor, moderate, and excellent. Uterine displacement on half-Fourier acquisition single-shot turbo spin-echo-cine images was calculated, and the maximum amplitude of uterine displacement and summation of uterine displacement were calculated from the displacement map images. The Kruskal-Wallis and Steel-Dwass tests were performed to compare the maximum amplitude of uterine displacement and summation of uterine displacement among the three groups. Poor, moderate, and excellent image qualities were observed in 48, 71, and 28 patients, respectively. The quality of fast-spin-echo-T<sub>2</sub>-weighted images degraded statistically significantly with P < 0.01 as the maximum amplitude of uterine displacement increased. The summation of uterine displacement in the poor and moderate groups had greater statistical significance with P < 0.01 than that in the excellent group.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"127-135"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of dynamic accuracy and latency of a surface-guided radiotherapy system.","authors":"Ryohei Yamauchi, Fumihiro Tomita","doi":"10.1007/s12194-024-00866-y","DOIUrl":"10.1007/s12194-024-00866-y","url":null,"abstract":"<p><p>The aim of this study is to evaluate the dynamic accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT in compliance with SGRT guidelines. Beam characteristics-flatness, symmetry, beam quality, and output-were compared between gated and nongated beams using a two-dimensional ionization chamber array and a Farmer-type chamber. Dynamic accuracy was assessed using a moving platform and breast phantom, with measurements taken for various shift values (5, 10, 30 mm), region-of-interest (ROI) shapes, reference-surface image types (DICOM and capture), surface resolutions, and room illuminations. Latency due to differences in frame rates was evaluated using radiochromic film, calculated from position displacements of profiles at two speeds. Differences in beam characteristics between gated and nongated beams were within 0.1%. Dynamic accuracy showed minimal dependence on settings, with deviations of < 1 mm for a 10-mm shift. A maximum displacement of 1.9 mm was observed with a 30-mm shift at the body ROI. Beam-on latency at 12, 16, 25, and 35 frames per second was 253.2 ± 21.9, 225.7 ± 33.7, 177.1 ± 43.0, and 112.4 ± 29.2 ms, respectively, with similar trends for beam-off latency. This study is the first to evaluate the dynamic accuracy of the TrueBeam and AlignRT system under SGRT-specific settings. While accuracy was generally maintained (< 1 mm), ROI shape significantly impacted results. Latency results indicate that certain frame rates may not meet guideline limits, underscoring the need for careful SGRT system use in clinical applications.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"136-146"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}