Murat Gurger, Omer Esmez, Sefa Key, Abdul Hafeez-Baig, Sengul Dogan, Turker Tuncer
{"title":"MobileTurkerNeXt:研究使用磁共振图像检测Bankart和SLAP病变。","authors":"Murat Gurger, Omer Esmez, Sefa Key, Abdul Hafeez-Baig, Sengul Dogan, Turker Tuncer","doi":"10.1007/s12194-025-00918-x","DOIUrl":null,"url":null,"abstract":"<p><p>The landscape of computer vision is predominantly shaped by two groundbreaking methodologies: transformers and convolutional neural networks (CNNs). In this study, we aim to introduce an innovative mobile CNN architecture designed for orthopedic imaging that efficiently identifies both Bankart and SLAP lesions. Our approach involved the collection of two distinct magnetic resonance (MR) image datasets, with the primary goal of automating the detection of Bankart and SLAP lesions. A novel mobile CNN, dubbed MobileTurkerNeXt, forms the cornerstone of this research. This newly developed model, comprising roughly 1 million trainable parameters, unfolds across four principal stages: the stem, main, downsampling, and output phases. The stem phase incorporates three convolutional layers to initiate feature extraction. In the main phase, we introduce an innovative block, drawing inspiration from ConvNeXt, EfficientNet, and ResNet architectures. The downsampling phase utilizes patchify average pooling and pixel-wise convolution to effectively reduce spatial dimensions, while the output phase is meticulously engineered to yield classification outcomes. Our experimentation with MobileTurkerNeXt spanned three comparative scenarios: Bankart versus normal, SLAP versus normal, and a tripartite comparison of Bankart, SLAP, and normal cases. The model demonstrated exemplary performance, achieving test classification accuracies exceeding 96% across these scenarios. The empirical results underscore the MobileTurkerNeXt's superior classification process in differentiating among Bankart, SLAP, and normal conditions in orthopedic imaging. This underscores the potential of our proposed mobile CNN in advancing diagnostic capabilities and contributing significantly to the field of medical image analysis.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MobileTurkerNeXt: investigating the detection of Bankart and SLAP lesions using magnetic resonance images.\",\"authors\":\"Murat Gurger, Omer Esmez, Sefa Key, Abdul Hafeez-Baig, Sengul Dogan, Turker Tuncer\",\"doi\":\"10.1007/s12194-025-00918-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The landscape of computer vision is predominantly shaped by two groundbreaking methodologies: transformers and convolutional neural networks (CNNs). In this study, we aim to introduce an innovative mobile CNN architecture designed for orthopedic imaging that efficiently identifies both Bankart and SLAP lesions. Our approach involved the collection of two distinct magnetic resonance (MR) image datasets, with the primary goal of automating the detection of Bankart and SLAP lesions. A novel mobile CNN, dubbed MobileTurkerNeXt, forms the cornerstone of this research. This newly developed model, comprising roughly 1 million trainable parameters, unfolds across four principal stages: the stem, main, downsampling, and output phases. The stem phase incorporates three convolutional layers to initiate feature extraction. In the main phase, we introduce an innovative block, drawing inspiration from ConvNeXt, EfficientNet, and ResNet architectures. The downsampling phase utilizes patchify average pooling and pixel-wise convolution to effectively reduce spatial dimensions, while the output phase is meticulously engineered to yield classification outcomes. Our experimentation with MobileTurkerNeXt spanned three comparative scenarios: Bankart versus normal, SLAP versus normal, and a tripartite comparison of Bankart, SLAP, and normal cases. The model demonstrated exemplary performance, achieving test classification accuracies exceeding 96% across these scenarios. The empirical results underscore the MobileTurkerNeXt's superior classification process in differentiating among Bankart, SLAP, and normal conditions in orthopedic imaging. This underscores the potential of our proposed mobile CNN in advancing diagnostic capabilities and contributing significantly to the field of medical image analysis.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00918-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00918-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
MobileTurkerNeXt: investigating the detection of Bankart and SLAP lesions using magnetic resonance images.
The landscape of computer vision is predominantly shaped by two groundbreaking methodologies: transformers and convolutional neural networks (CNNs). In this study, we aim to introduce an innovative mobile CNN architecture designed for orthopedic imaging that efficiently identifies both Bankart and SLAP lesions. Our approach involved the collection of two distinct magnetic resonance (MR) image datasets, with the primary goal of automating the detection of Bankart and SLAP lesions. A novel mobile CNN, dubbed MobileTurkerNeXt, forms the cornerstone of this research. This newly developed model, comprising roughly 1 million trainable parameters, unfolds across four principal stages: the stem, main, downsampling, and output phases. The stem phase incorporates three convolutional layers to initiate feature extraction. In the main phase, we introduce an innovative block, drawing inspiration from ConvNeXt, EfficientNet, and ResNet architectures. The downsampling phase utilizes patchify average pooling and pixel-wise convolution to effectively reduce spatial dimensions, while the output phase is meticulously engineered to yield classification outcomes. Our experimentation with MobileTurkerNeXt spanned three comparative scenarios: Bankart versus normal, SLAP versus normal, and a tripartite comparison of Bankart, SLAP, and normal cases. The model demonstrated exemplary performance, achieving test classification accuracies exceeding 96% across these scenarios. The empirical results underscore the MobileTurkerNeXt's superior classification process in differentiating among Bankart, SLAP, and normal conditions in orthopedic imaging. This underscores the potential of our proposed mobile CNN in advancing diagnostic capabilities and contributing significantly to the field of medical image analysis.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.