Daimu Fujimoto, Jun Takatsu, Naoya Hara, Masaki Oshima, Jun Tomihara, Eisuke Segawa, Tatsuya Inoue, Naoto Shikama
{"title":"Dosimetric comparison of four-dimensional computed tomography based internal target volume against variations in respiratory motion during treatment between volumetric modulated arc therapy and three-dimensional conformal radiotherapy in lung stereotactic body radiotherapy.","authors":"Daimu Fujimoto, Jun Takatsu, Naoya Hara, Masaki Oshima, Jun Tomihara, Eisuke Segawa, Tatsuya Inoue, Naoto Shikama","doi":"10.1007/s12194-023-00757-8","DOIUrl":"10.1007/s12194-023-00757-8","url":null,"abstract":"<p><p>This study focused on the dosimetric impact of variations in respiratory motion during lung stereotactic body radiotherapy (SBRT). Dosimetric comparisons between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiotherapy (3DCRT) were performed using four-dimensional computed tomography (4DCT)-based internal target volumes (ITV). We created retrospective plans for ten patients with lung cancer who underwent SBRT using 3DCRT and VMAT techniques. A Delta4 Phantom + (ScandiDos, Uppsala, Sweden) was used to evaluate the dosimetric robustness of 4DCT-based ITV against variations in respiratory motion during treatment. We analyzed respiratory motion during treatment. Dose-volume histogram parameters were evaluated for the 95% dose (D<sub>95%</sub>) to the planning target volume (PTV) contoured on CT images obtained under free breathing. The correlations between patient respiratory parameters and dosimetric errors were also evaluated. In the phantom study, the average PTV D<sub>95%</sub> dose differences for all fractions were - 2.9 ± 4.4% (- 16.0 - 1.2%) and - 2.0 ± 2.8% (- 11.2 - 0.7%) for 3DCRT and VMAT, respectively. The average dose difference was < 3% for both 3DCRT and VMAT; however, in 5 out of 42 fractions in 3DCRT, the difference in PTV D<sub>95%</sub> was > 10%. Dosimetric errors were correlated with respiratory amplitude and velocity, and differences in respiratory amplitude between 4DCT and treatment days were the main factors causing dosimetric errors. The overall average dose error of the PTV D<sub>95%</sub> was small; however, both 3DCRT and VMAT cases exceeding 10% error were observed. Larger errors occurred with amplitude variation or baseline drift, indicating limited robustness of 4DCT-based ITV.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71487240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Knowledge-based model building for treatment planning for prostate cancer using commercial treatment planning quality assurance software tools.","authors":"Nagi Masumoto, Motoharu Sasaki, Yuji Nakaguchi, Takeshi Kamomae, Yuki Kanazawa, Hitoshi Ikushima","doi":"10.1007/s12194-023-00759-6","DOIUrl":"10.1007/s12194-023-00759-6","url":null,"abstract":"<p><p>This study devised a method to efficiently launch the RapidPlan model for volumetric-modulated arc therapy for prostate cancer in small- and medium-sized facilities using high-quality treatment plans with the PlanIQ software as a reference. Treatment plans were generated for 30 patients with prostate cancer to construct the RapidPlan model using PlanIQ as a reference. In the context of PlanIQ-referenced treatment planning, treatment plans were developed, such that the feasibility dose-volume histogram of each organ-at-risk fell within F ≤ 0.1. For validation of the RapidPlan model, treatment plans were formulated for 20 patients using both RapidPlan and PlanIQ, and the differences were evaluated. The results of RapidPlan model validity assessment revealed that the RapidPlan-produced treatment plans exhibited higher quality in 11 of 20 patients. No significant differences were found between the treatment plans. In conclusion, high-quality treatment plans formulated using PlanIQ as reference facilitated efficient implementation of RapidPlan modeling.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71487241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS.","authors":"Yuya Nagake, Keisuke Yasui, Hiromu Ooe, Masaya Ichihara, Kaito Iwase, Toshiyuki Toshito, Naoki Hayashi","doi":"10.1007/s12194-024-00777-y","DOIUrl":"10.1007/s12194-024-00777-y","url":null,"abstract":"<p><p>The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> and beam quality correction factors <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the <math><msub><mi>f</mi> <mtext>Q</mtext></msub> </math> and <math><msub><mi>k</mi> <mtext>Q</mtext></msub> </math> with high precision.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Possible mechanisms and simulation modeling of FLASH radiotherapy.","authors":"Yuta Shiraishi, Yusuke Matsuya, Hisanori Fukunaga","doi":"10.1007/s12194-023-00770-x","DOIUrl":"10.1007/s12194-023-00770-x","url":null,"abstract":"<p><p>FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01-0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina C Poletto, Eduardo Thomazi, Janete E Zorzi, Thiago O Gamba, Cláudio A Perottoni
{"title":"Development of an open project rectangular collimator for use with intraoral dental X-ray unit.","authors":"Marina C Poletto, Eduardo Thomazi, Janete E Zorzi, Thiago O Gamba, Cláudio A Perottoni","doi":"10.1007/s12194-023-00772-9","DOIUrl":"10.1007/s12194-023-00772-9","url":null,"abstract":"<p><p>In this work, an open beam-limiting device, consisting of a rectangular collimator to be coupled to an intraoral dental X-ray device, was made using recycled lead sheets as a radiation-absorbing element. The collimator was designed for 3D printing, and using Spektr 3.0 software, the number of lead sheets needed to absorb excess radiation was calculated. The rectangular collimator reduced the radiation dose to patients by 65% when using four layers of recycled lead sheets (saturating with a 70% reduction in radiation dose at the limit of eight or more sheets of lead). The rectangular collimator does not negatively impact the quality of the radiological image, is available as an open design for 3D printing, and can be built with materials that are easily accessible to the dentist, facilitating its use in clinical practice and reducing the patient's exposure to ionizing radiation.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of attenuation correction method for head holder in brain perfusion single-photon emission computed tomography.","authors":"Masahiro Nakashima, Yuta Yamazaki","doi":"10.1007/s12194-024-00778-x","DOIUrl":"10.1007/s12194-024-00778-x","url":null,"abstract":"<p><p>Head holder attenuation affects brain perfusion single-photon emission computed tomography (SPECT) image quality. Here, we proposed a head holder-attenuation correction (AC) method using attenuation coefficient maps calculated by Chang's method from CT images. Then, we evaluated the effectiveness of the head holder-AC method by numerical phantom and clinical cerebral perfusion SPECT studies. In the numerical phantom, the posterior counts were 10.7% lower than the anterior counts without head holder-AC method. However, by performing head holder-AC, the posterior count recovered by approximately 6.8%, approaching the true value. In the clinical study, the normalized count ratio was significantly increased by performing the head holder-AC method in the posterior-middle cerebral artery, posterior cerebral artery and cerebellum regions. There were no significant increases in other regions. The head holder-AC method can correct the counts attenuated by the head holder.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving the depiction of small intracranial vessels in head computed tomography angiography: a comparative analysis of deep learning reconstruction and hybrid iterative reconstruction.","authors":"Makoto Ozaki, Shota Ichikawa, Masaaki Fukunaga, Hiroyuki Yamamoto","doi":"10.1007/s12194-023-00749-8","DOIUrl":"10.1007/s12194-023-00749-8","url":null,"abstract":"<p><p>This study aimed to evaluate the ability of deep learning reconstruction (DLR) compared to that of hybrid iterative reconstruction (IR) to depict small vessels on computed tomography (CT). DLR and two types of hybrid IRs were used for image reconstruction. The target vessels were the basilar artery (BA), superior cerebellar artery (SCA), anterior inferior cerebellar artery (AICA), and posterior inferior cerebellar artery (PICA). The peak value, ΔCT values defined as the difference between the peak value and background, and full width at half maximum (FWHM), were obtained from the profile curves. In all target vessels, the peak and ΔCT values of DLR were significantly higher than those of the two types of hybrid IR (p < 0.001). Compared to that associated with hybrid IR, the FWHM of DLR was significantly lower in the SCA (p < 0.001), AICA (p < 0.001), and PICA (p < 0.001). In conclusion, DLR has the potential to improve visualization of small vessels.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66784464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Verification of image quality improvement of low-count bone scintigraphy using deep learning.","authors":"Taisuke Murata, Takuma Hashimoto, Masahisa Onoguchi, Takayuki Shibutani, Takashi Iimori, Koichi Sawada, Tetsuro Umezawa, Yoshitada Masuda, Takashi Uno","doi":"10.1007/s12194-023-00776-5","DOIUrl":"10.1007/s12194-023-00776-5","url":null,"abstract":"<p><p>To improve image quality for low-count bone scintigraphy using deep learning and evaluate their clinical applicability. Six hundred patients (training, 500; validation, 50; evaluation, 50) were included in this study. Low-count original images (75%, 50%, 25%, 10%, and 5% counts) were generated from reference images (100% counts) using Poisson resampling. Output (DL-filtered) images were obtained after training with U-Net using reference images as teacher data. Gaussian-filtered images were generated for comparison. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) to the reference image were calculated to determine image quality. Artificial neural network (ANN) value, bone scan index (BSI), and number of hotspots (Hs) were computed using BONENAVI analysis to assess diagnostic performance. Accuracy of bone metastasis detection and area under the curve (AUC) were calculated. PSNR and SSIM for DL-filtered images were highest in all count percentages. BONENAVI analysis values for DL-filtered images did not differ significantly, regardless of the presence or absence of bone metastases. BONENAVI analysis values for original and Gaussian-filtered images differed significantly at ≦25% counts in patients without bone metastases. In patients with bone metastases, BSI and Hs for original and Gaussian-filtered images differed significantly at ≦10% counts, whereas ANN values did not. The accuracy of bone metastasis detection was highest for DL-filtered images in all count percentages; the AUC did not differ significantly. The deep learning method improved image quality and bone metastasis detection accuracy for low-count bone scintigraphy, suggesting its clinical applicability.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology.","authors":"Shigeyoshi Saito, Junpei Ueda","doi":"10.1007/s12194-024-00785-y","DOIUrl":"10.1007/s12194-024-00785-y","url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as \"preclinical MRI\". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A practical method to simulate realistic reduced-exposure CT images by the addition of computationally generated noise.","authors":"Nicholas Mark Gibson, Amy Lee, Martin Bencsik","doi":"10.1007/s12194-023-00755-w","DOIUrl":"10.1007/s12194-023-00755-w","url":null,"abstract":"<p><p>Computed tomography (CT) scanning protocols should be optimized to minimize the radiation dose necessary for imaging. The addition of computationally generated noise to the CT images facilitates dose reduction. The objective of this study was to develop a noise addition method that reproduces the complexity of the noise texture present in clinical images with directionality that varies over images according to the underlying anatomy, requiring only Digital Imaging and Communications in Medicine (DICOM) images as input data and commonly available phantoms for calibration. The developed method is based on the estimation of projection data by forward projection from images, the addition of Poisson noise, and the reconstruction of new images. The method was validated by applying it to images acquired from cylindrical and thoracic phantoms using source images with exposures up to 49 mAs and target images between 39 and 5 mAs. 2D noise spectra were derived for regions of interest in the generated low-dose images and compared with those from the scanner-acquired low-dose images. The root mean square difference between the standard deviations of noise was 4%, except for very low exposures in peripheral regions of the cylindrical phantom. The noise spectra from the corresponding regions of interest exhibited remarkable agreement, indicating that the complex nature of the noise was reproduced. A practical method for adding noise to CT images was presented, and the magnitudes of noise and spectral content were validated. This method may be used to optimize CT imaging.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89719972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}