Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Masahiro Nakashima, Ryohei Fukui, Seiichiro Sugimoto, Toshihiro Iguchi
{"title":"Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation.","authors":"Masahiro Nakashima, Ryohei Fukui, Seiichiro Sugimoto, Toshihiro Iguchi","doi":"10.1007/s12194-024-00853-3","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to evaluate the image quality and diagnostic performance of chronic lung allograft dysfunction (CLAD) with lung ventilation single-photon emission computed tomography (SPECT) images acquired briefly using a convolutional neural network (CNN) in patients after lung transplantation and to explore the feasibility of short acquisition times. We retrospectively identified 93 consecutive lung-transplant recipients who underwent ventilation SPECT/computed tomography (CT). We employed a CNN to distinguish the images acquired in full time from those acquired in a short time. The image quality was evaluated using the structural similarity index (SSIM) loss and normalized mean square error (NMSE). The correlation between functional volume/morphological volume (F/M) ratios of full-time SPECT images and predicted SPECT images was evaluated. Differences in the F/M ratio were evaluated using Bland-Altman plots, and the diagnostic performance was compared using the area under the curve (AUC). The learning curve, obtained using MSE, converged within 100 epochs. The NMSE was significantly lower (P < 0.001) and the SSIM was significantly higher (P < 0.001) for the CNN-predicted SPECT images compared to the short-time SPECT images. The F/M ratio of full-time SPECT images and predicted SPECT images showed a significant correlation (r = 0.955, P < 0.0001). The Bland-Altman plot revealed a bias of -7.90% in the F/M ratio. The AUC values were 0.942 for full-time SPECT images, 0.934 for predicted SPECT images and 0.872 for short-time SPECT images. Our findings suggest that a deep-learning-based approach can significantly curtail the acquisition time of ventilation SPECT, while preserving the image quality and diagnostic accuracy for CLAD.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00853-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to evaluate the image quality and diagnostic performance of chronic lung allograft dysfunction (CLAD) with lung ventilation single-photon emission computed tomography (SPECT) images acquired briefly using a convolutional neural network (CNN) in patients after lung transplantation and to explore the feasibility of short acquisition times. We retrospectively identified 93 consecutive lung-transplant recipients who underwent ventilation SPECT/computed tomography (CT). We employed a CNN to distinguish the images acquired in full time from those acquired in a short time. The image quality was evaluated using the structural similarity index (SSIM) loss and normalized mean square error (NMSE). The correlation between functional volume/morphological volume (F/M) ratios of full-time SPECT images and predicted SPECT images was evaluated. Differences in the F/M ratio were evaluated using Bland-Altman plots, and the diagnostic performance was compared using the area under the curve (AUC). The learning curve, obtained using MSE, converged within 100 epochs. The NMSE was significantly lower (P < 0.001) and the SSIM was significantly higher (P < 0.001) for the CNN-predicted SPECT images compared to the short-time SPECT images. The F/M ratio of full-time SPECT images and predicted SPECT images showed a significant correlation (r = 0.955, P < 0.0001). The Bland-Altman plot revealed a bias of -7.90% in the F/M ratio. The AUC values were 0.942 for full-time SPECT images, 0.934 for predicted SPECT images and 0.872 for short-time SPECT images. Our findings suggest that a deep-learning-based approach can significantly curtail the acquisition time of ventilation SPECT, while preserving the image quality and diagnostic accuracy for CLAD.

基于深度学习的方法缩短肺移植术后患者通气 SPECT 的采集时间
我们的目的是评估使用卷积神经网络(CNN)短暂采集的肺通气单光子发射计算机断层扫描(SPECT)图像对肺移植术后患者慢性肺异位功能障碍(CLAD)的图像质量和诊断性能,并探索短采集时间的可行性。我们回顾性地确定了 93 名连续接受通气 SPECT/计算机断层扫描(CT)的肺移植受者。我们使用 CNN 来区分全时间采集的图像和短时间采集的图像。图像质量通过结构相似性指数(SSIM)损失和归一化均方误差(NMSE)进行评估。评估了全时 SPECT 图像和预测 SPECT 图像的功能容积/形态容积(F/M)比之间的相关性。使用Bland-Altman图评估F/M比率的差异,并使用曲线下面积(AUC)比较诊断性能。使用 MSE 得出的学习曲线在 100 个历时内收敛。NMSE 明显较低(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信