Cone-beam computed tomography (CBCT) image-quality improvement using a denoising diffusion probabilistic model conditioned by pseudo-CBCT of pelvic regions.
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Masayuki Hattori, Hongbo Chai, Toshitada Hiraka, Koji Suzuki, Tetsuya Yuasa
{"title":"Cone-beam computed tomography (CBCT) image-quality improvement using a denoising diffusion probabilistic model conditioned by pseudo-CBCT of pelvic regions.","authors":"Masayuki Hattori, Hongbo Chai, Toshitada Hiraka, Koji Suzuki, Tetsuya Yuasa","doi":"10.1007/s12194-025-00892-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cone-beam computed tomography (CBCT) is widely used in radiotherapy to image patient configuration before treatment but its image quality is lower than planning CT due to scattering, motion, and reconstruction methods. This reduces the accuracy of Hounsfield units (HU) and limits its use in adaptive radiation therapy (ART). However, synthetic CT (sCT) generation using deep learning methods for CBCT intensity correction faces challenges due to deformation. To address these issues, we propose enhancing CBCT quality using a conditional denoising diffusion probability model (CDDPM), which is trained on pseudo-CBCT created by adding pseudo-scatter to planning CT. The CDDPM transforms CBCT into high-quality sCT, improving HU accuracy while preserving anatomical configuration. The performance evaluation of the proposed sCT showed a reduction in mean absolute error (MAE) from 81.19 HU for CBCT to 24.89 HU for the sCT. Peak signal-to-noise ratio (PSNR) improved from 31.20 dB for CBCT to 33.81 dB for the sCT. The Dice and Jaccard coefficients between CBCT and sCT for the colon, prostate, and bladder ranged from 0.69 to 0.91. When compared to other deep learning models, the proposed sCT outperformed them in terms of accuracy and anatomical preservation. The dosimetry analysis for prostate cancer revealed a dose error of over 10% with CBCT but nearly 0% with the sCT. Gamma pass rates for the proposed sCT exceeded 90% for all dose criteria, indicating high agreement with CT-based dose distributions. These results show that the proposed sCT improves image quality, dosimetry accuracy, and treatment planning, advancing ART for pelvic cancer.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00892-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Cone-beam computed tomography (CBCT) is widely used in radiotherapy to image patient configuration before treatment but its image quality is lower than planning CT due to scattering, motion, and reconstruction methods. This reduces the accuracy of Hounsfield units (HU) and limits its use in adaptive radiation therapy (ART). However, synthetic CT (sCT) generation using deep learning methods for CBCT intensity correction faces challenges due to deformation. To address these issues, we propose enhancing CBCT quality using a conditional denoising diffusion probability model (CDDPM), which is trained on pseudo-CBCT created by adding pseudo-scatter to planning CT. The CDDPM transforms CBCT into high-quality sCT, improving HU accuracy while preserving anatomical configuration. The performance evaluation of the proposed sCT showed a reduction in mean absolute error (MAE) from 81.19 HU for CBCT to 24.89 HU for the sCT. Peak signal-to-noise ratio (PSNR) improved from 31.20 dB for CBCT to 33.81 dB for the sCT. The Dice and Jaccard coefficients between CBCT and sCT for the colon, prostate, and bladder ranged from 0.69 to 0.91. When compared to other deep learning models, the proposed sCT outperformed them in terms of accuracy and anatomical preservation. The dosimetry analysis for prostate cancer revealed a dose error of over 10% with CBCT but nearly 0% with the sCT. Gamma pass rates for the proposed sCT exceeded 90% for all dose criteria, indicating high agreement with CT-based dose distributions. These results show that the proposed sCT improves image quality, dosimetry accuracy, and treatment planning, advancing ART for pelvic cancer.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.