Artificial Life and Robotics最新文献

筛选
英文 中文
Safety controller based on control barrier functions using quasi-saturation function 基于准饱和控制屏障函数的安全控制器
IF 0.9
Artificial Life and Robotics Pub Date : 2023-09-26 DOI: 10.1007/s10015-023-00899-3
Satoshi Ueki, Takahiro Ikeda, Hironao Yamada
{"title":"Safety controller based on control barrier functions using quasi-saturation function","authors":"Satoshi Ueki,&nbsp;Takahiro Ikeda,&nbsp;Hironao Yamada","doi":"10.1007/s10015-023-00899-3","DOIUrl":"10.1007/s10015-023-00899-3","url":null,"abstract":"<div><p>Safety–critical system is important in a human–robot collaborative environment. Control Barrier Functions (CBFs)-based methods have emerged as a practical tool for the safety–critical control of autonomous systems. The design of CBFs is difficult to tune. Also, once additional constraints are introduced, the quadratic programming may encounter infeasibility. This paper proposes a safety–critical controller based on a control barrier function using a quasi-saturation function. To avoid infeasibility, we propose to separate the tracking controller from the safety controller. To facilitate the design of the control barrier function, we also propose the control barrier function using the quasi-saturation function. Numerical simulations are presented to show the effectiveness of the proposed method.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance control based on error feedback for the manipulator of an underwater vehicle-manipulator system 基于误差反馈的水下机器人机械手阻抗控制
IF 0.9
Artificial Life and Robotics Pub Date : 2023-09-21 DOI: 10.1007/s10015-023-00896-6
Yuichiro Taira, Shinichi Sagara, Masahiro Oya
{"title":"Impedance control based on error feedback for the manipulator of an underwater vehicle-manipulator system","authors":"Yuichiro Taira,&nbsp;Shinichi Sagara,&nbsp;Masahiro Oya","doi":"10.1007/s10015-023-00896-6","DOIUrl":"10.1007/s10015-023-00896-6","url":null,"abstract":"<div><p>This paper deals with the design of a motion and force control scheme for underwater vehicles, each of which has a manipulator. For a subsea operation that requires a contact between the manipulator’s tip (e.g., the hand) and various types of environments, it is desirable that the mechanical impedance of the manipulator is adjusted according to the contact surface. From this point of view, the paper focuses on the design of an impedance control scheme. Several impedance controllers have been developed. Most of them were designed on the assumption that the control capability of the vehicle is the same as that of the manipulator. However, it has been pointed out in the literature that for a real underwater robot, its vehicle control is more challenging than its manipulator control, because the vehicle has much larger inertia, and many more inaccurate position sensors and actuators than the manipulator. In view of this fact, we develop an impedance control scheme for the manipulator under the condition that the vehicle is independently controlled by a motion controller with poor performance. Moreover, we provide the results of simulations for comparing an existing controller with the proposed one.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAES: a ROS 2-compatible simulation tool for exploration and coverage algorithms MAES:一个ROS2兼容的探索和覆盖算法模拟工具
IF 0.9
Artificial Life and Robotics Pub Date : 2023-09-21 DOI: 10.1007/s10015-023-00895-7
Malte Z. Andreasen, Philip I. Holler, Magnus K. Jensen, Michele Albano
{"title":"MAES: a ROS 2-compatible simulation tool for exploration and coverage algorithms","authors":"Malte Z. Andreasen,&nbsp;Philip I. Holler,&nbsp;Magnus K. Jensen,&nbsp;Michele Albano","doi":"10.1007/s10015-023-00895-7","DOIUrl":"10.1007/s10015-023-00895-7","url":null,"abstract":"<div><p>With the aim of allowing the efficient and realistic simulation of swarm algorithms for exploration and coverage, we present the tool Multi-Agent Exploration Simulator (MAES), which is an open-source physics-based discrete step multi-robot simulator. MAES features movement in a continuous 2D space, realistic physics based on the Unity framework, advanced visualization techniques such as heatmaps, custom wireless signal degradation, both randomly generated and custom user-provided maps, and a ROS (Robot Operating System) interface. This latter characteristic could allow to port the simulated algorithms to real-world robots. We present performance tests, conducted with rather modest hardware, showing that MAES is able to simulate up to 5 robots in ROSMode (using the ROS integration) and up to 120 robots in UnityMode (development performed directly into the C# Unity Editor). A usability test was conducted which hinted that the target audience of robotics researchers and developers is able to quickly install, setup, and use MAES for implementing simple robot logic.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of social navigation quality evaluation model based on combined weight 基于组合权重的社交导航质量评价模型设计
IF 0.9
Artificial Life and Robotics Pub Date : 2023-08-28 DOI: 10.1007/s10015-023-00894-8
Hao Wu, Haipeng Liu, Kun Wang
{"title":"Design of social navigation quality evaluation model based on combined weight","authors":"Hao Wu,&nbsp;Haipeng Liu,&nbsp;Kun Wang","doi":"10.1007/s10015-023-00894-8","DOIUrl":"10.1007/s10015-023-00894-8","url":null,"abstract":"<div><p>Based on the human–robot interaction behavior of mobile robots in social navigation, this paper proposes a social navigation quality evaluation model based on combined weights for the problems of single indicators, rough quantification and non-convergence of information in social navigation quality evaluation. Firstly, three evaluation modules of comfort, naturalness and sociality are designed, and each module is refined into primary and secondary indicators. The robot path navigation data are calculated by the indicator quantification formula. Secondly, the subjective and objective weights of hierarchical analysis method and the entropy weight method are combined to determine the index weights at each level. The weighted sum is used to achieve the fusion of index information and obtain the optimal solution of the evaluation navigation algorithm. Finally, we simulate the social scene through visualization simulation experiments to obtain the trajectory data of the robot in the social scene. The experimental results verify the feasibility of the theoretical model and give the final scores and optimization opinions of the tested algorithms. Through the evaluation of the social navigation quality evaluation model, the path planning algorithm that best suits the comfort perception of pedestrians in the current scenario can be found in the tested algorithms.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43826416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency SSVEP–BCI with less flickering sensation using personalization of stimulus frequency 使用个性化刺激频率的高频SSVEP-BCI具有较少的闪烁感
IF 0.9
Artificial Life and Robotics Pub Date : 2023-08-10 DOI: 10.1007/s10015-023-00893-9
Sodai Kondo, Hisaya Tanaka
{"title":"High-frequency SSVEP–BCI with less flickering sensation using personalization of stimulus frequency","authors":"Sodai Kondo,&nbsp;Hisaya Tanaka","doi":"10.1007/s10015-023-00893-9","DOIUrl":"10.1007/s10015-023-00893-9","url":null,"abstract":"<div><p>The problem of brain–computer interface (BCI) using steady-state visual evoked potential (SSVEP) is a flickering sensation caused by the flashing stimuli used to induce SSVEP. To use of high-frequency flashing stimuli is one of the countermeasures of this problem. This study focused on the relationship between the magnitude of SSVEP components for each subject and proposed a high-frequency (56–70 Hz) SSVEP–BCI that uses only the frequencies at which SSVEP induction was confirmed. For comparison, the accuracy of SSVEP–BCI using learning CCA (LCCA), an extension of canonical correlation analysis (CCA), was 98.61% for the low-frequency (26–40 Hz) SSVEP–BCI for comparison, 62.78% for the high frequency (56–70 Hz) SSVEP–BCI, and 87.19% for the high frequency (56–70 Hz) SSVEP–BCI with personalized stimulus frequency. As a result of comparing with and without personalization using information transfer rate (ITR), non-personalized (normal) and personalized high-frequency SSVEP–BCI ITR were 24.25 bits/min and 29.64 bits/min.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45998137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of keypads which use colors or shapes to prevent shoulder surfing 开发键盘,使用颜色或形状来防止肩部冲浪
IF 0.9
Artificial Life and Robotics Pub Date : 2023-08-02 DOI: 10.1007/s10015-023-00890-y
Ryo Masuzawa, Kentaro Aburada, Hisaaki Yamaba, Tetsuro Katayama, Naonobu Okazaki
{"title":"Development of keypads which use colors or shapes to prevent shoulder surfing","authors":"Ryo Masuzawa,&nbsp;Kentaro Aburada,&nbsp;Hisaaki Yamaba,&nbsp;Tetsuro Katayama,&nbsp;Naonobu Okazaki","doi":"10.1007/s10015-023-00890-y","DOIUrl":"10.1007/s10015-023-00890-y","url":null,"abstract":"<div><p>In conventional smart phones and ATMs, a four-digit passcode is entered into a keypad, and the user confirms whether the passcode matches the keypad. However, there is a risk that a third party can easily steal the password by watching the code entry or analyzing the position of fingerprints left on the keypad. There are other solutions, such as biometric authentication or the use of special displays, but both of them are costly and difficult to implement. In this study, we propose a keypad that does not leave fingerprints on the screen, is low cost, and can be used to input passcodes without worry, even if someone is standing next to it. The proposed keypad uses cursors that are moved by directional keys to select numbers, making fingerprint analysis difficult. Because attackers do not know the color that the user has selected, they cannot know which cursor the user is moving. To verify the safety and convenience of this system, we conducted experiments on subjects in their 20 s and 50 s. The results showed that the average difference in authentication time from the conventional method was about 5 s, and the method was generally convenient. We conclude that our keypad system is secure, because no peeping attacks on a subject were successful in guessing the subject’s passcode.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42281521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mushroom cultivation and harvesting in media supported by 3D-printed anisotropic elastic structures 3D打印各向异性弹性结构支持的蘑菇培养和收获
IF 0.9
Artificial Life and Robotics Pub Date : 2023-08-01 DOI: 10.1007/s10015-023-00886-8
Kouki Saito, Jun Ogawa, Yosuke Watanabe, M. D. Nahin Islam Shiblee, Masaru Kawakami, Hidemitsu Furukawa
{"title":"Mushroom cultivation and harvesting in media supported by 3D-printed anisotropic elastic structures","authors":"Kouki Saito,&nbsp;Jun Ogawa,&nbsp;Yosuke Watanabe,&nbsp;M. D. Nahin Islam Shiblee,&nbsp;Masaru Kawakami,&nbsp;Hidemitsu Furukawa","doi":"10.1007/s10015-023-00886-8","DOIUrl":"10.1007/s10015-023-00886-8","url":null,"abstract":"<div><p>Mushrooms grow so fast during the harvest season that they can double in size in a day. However, the soft and fragile nature of mushrooms makes manual harvesting of domestic brand varieties a necessity. Therefore, an important industrial issue in the efficiency of mushroom cultivation in Japan is how to make mushrooms easy to harvest and grow. The technical elements of mushroom harvesting are (1) non-damaging harvesting methods, (2) control of colony growth, and (3) expansion of growing area. This study proposes a three-dimensional and deformable culture medium to solve the problems (1)–(3). The proposed three-dimensional medium has a 3D-printed anisotropic elastic well structure embedded inside. The medium keeps the medium in a three-dimensional shape and allows mushrooms to be generated from the sides and bottom. In addition, we show that during the harvesting period, by applying pressure to the medium in a single direction. The soil can be removed from each side of the mushrooms and the mushrooms can be harvested.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45670343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the Gel Biter create an illusion of food texture perception due to differences in mastication speed ? 凝胶咬器是否会因为咀嚼速度的不同而产生食物质感感知的错觉?
IF 0.9
Artificial Life and Robotics Pub Date : 2023-08-01 DOI: 10.1007/s10015-023-00891-x
Kosuke Hirose, Jun Ogawa, Yosuke Watanabe, M. D. Nahin Islam Shiblee, Masaru Kawakami, Hidemitsu Furukawa
{"title":"Does the Gel Biter create an illusion of food texture perception due to differences in mastication speed ?","authors":"Kosuke Hirose,&nbsp;Jun Ogawa,&nbsp;Yosuke Watanabe,&nbsp;M. D. Nahin Islam Shiblee,&nbsp;Masaru Kawakami,&nbsp;Hidemitsu Furukawa","doi":"10.1007/s10015-023-00891-x","DOIUrl":"10.1007/s10015-023-00891-x","url":null,"abstract":"<div><p>One of the new computational frameworks is physical reservoir computing. Focusing on this method, we have previously developed a soft-matter artificial mouth ”Gel Biter”, which is composed of multiple polymeric materials based on the structure of the human oral cavity. This soft machine can discriminate even subtle differences in food texture with high accuracy. In general, chewing speed differs from person to person. Then, we focus on the result that brittle foods tend to be chewed faster or more finely based on sensory evaluation in some cognitive studies. This study has analyzed the accuracy of the Gel Biter by changing the parameters of its robotic arm and the differences in food texture perceived when the chewing speed is changed. As a result, there is no significant difference in discrimination accuracy for each speed. The cluster analysis shows that the food characteristics are captured and classified. In addition, the estimation results for Fast chewing indicate that the mechanical mouth also generates the illusion that humans perceive different food textures.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44181712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic analog–digital integrated circuit for edge detection based on the vertebrate retina 基于脊椎动物视网膜边缘检测的基本模数集成电路
IF 0.9
Artificial Life and Robotics Pub Date : 2023-07-28 DOI: 10.1007/s10015-023-00892-w
Kimihiro Nishio, Natsumi Kuroda
{"title":"Basic analog–digital integrated circuit for edge detection based on the vertebrate retina","authors":"Kimihiro Nishio,&nbsp;Natsumi Kuroda","doi":"10.1007/s10015-023-00892-w","DOIUrl":"10.1007/s10015-023-00892-w","url":null,"abstract":"<div><p>Novel basic analog–digital edge detection circuits in this research were proposed based on the vertebrate retina. The vertebrate retina is a pre-processor for image processing in the brain and has superior functions such as edge detection and motion detection. The proposed circuit was evaluated by the simulation program with integrated circuit emphasis (SPICE) with the 0.6 μm complementary metal oxide semiconductor (CMOS) process. The simulation results with SPICE showed that the proposed circuits can operate normally. The test integrated circuit of the unit circuit was fabricated with a 0.6 μm CMOS process. The measured results showed that the unit circuit can detect the edge position. The test integrated circuits of one-dimensional array of unit circuits were fabricated with the same process. The measured results showed that the one-dimensional circuits can detect the edge position. In the future, the realization of a new vision sensor can be expected using the proposed circuit.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42755490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass spring model for non-uniformed deformable linear object toward dexterous manipulation 面向灵巧操作的非均匀变形线性物体的质量弹簧模型
IF 0.9
Artificial Life and Robotics Pub Date : 2023-07-27 DOI: 10.1007/s10015-023-00889-5
Kenta Tabata, Hiroaki Seki, Tokuo Tsuji, Tatsuhiro Hiramitsu
{"title":"Mass spring model for non-uniformed deformable linear object toward dexterous manipulation","authors":"Kenta Tabata,&nbsp;Hiroaki Seki,&nbsp;Tokuo Tsuji,&nbsp;Tatsuhiro Hiramitsu","doi":"10.1007/s10015-023-00889-5","DOIUrl":"10.1007/s10015-023-00889-5","url":null,"abstract":"<div><p>Manipulation for deformable object is difficult in robotics. The deformation of the deformable object is not the same, despite the same manipulation. This is due to the difference in the object characteristics, which depend on knitting, material, etc. This leads to difficulties in the motion planning. We propose a method that estimates the string model by comparing the real string movement and simulated string movement in a certain manipulation repeatedly by trial and error. This method realizes several manipulations using unknown strings. But feasible range was limited to uniform strings. In this paper, we proposed string model for representing various kind of string. This model assumed that mass distribution is not uniform and bending properties is different depending on extraction and contraction. Where this model was applied to several non-uniform string and uniform string, we confirmed that the proposed model can express the actual string movement.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44394594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信