Pig sorting system with three exits that incorporates an RGB-D sensor for constant use during fattening

IF 0.8 Q4 ROBOTICS
Kikuhito Kawasue, Khin Dagon Win, Kumiko Yoshida, Geunho Lee
{"title":"Pig sorting system with three exits that incorporates an RGB-D sensor for constant use during fattening","authors":"Kikuhito Kawasue,&nbsp;Khin Dagon Win,&nbsp;Kumiko Yoshida,&nbsp;Geunho Lee","doi":"10.1007/s10015-023-00917-4","DOIUrl":null,"url":null,"abstract":"<div><p>In pig production, the number of pigs raised on each farm is increasing, but the population of workers involved in pig production is decreasing, so lighter labor is expected. On the other hand, it is also important to improve pig grading and profitability. Weight is a major criterion for pig grading. Too heavy or too light will decrease profits, and pigs need to be shipped at the appropriate weight. However, since each pig weighs more than 100 kg, weighing each pig is very labor-intensive. In large farms, more than 50 pigs are kept in a single piggery, and they are shipped together at the same time, after determining the day when they have reached the proper weight for shipment. In order to improve profitability, it is important to control the growth of pigs in a piggery so that they grow uniformly and to determine the appropriate shipping date. In this study, a prototype system was developed to automatically measure daily weight distribution. If the weight distribution in the piggery is known, appropriate shipping dates can be determined. This paper reports the results of a valid experiment using the developed system.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"29 1","pages":"37 - 42"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00917-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In pig production, the number of pigs raised on each farm is increasing, but the population of workers involved in pig production is decreasing, so lighter labor is expected. On the other hand, it is also important to improve pig grading and profitability. Weight is a major criterion for pig grading. Too heavy or too light will decrease profits, and pigs need to be shipped at the appropriate weight. However, since each pig weighs more than 100 kg, weighing each pig is very labor-intensive. In large farms, more than 50 pigs are kept in a single piggery, and they are shipped together at the same time, after determining the day when they have reached the proper weight for shipment. In order to improve profitability, it is important to control the growth of pigs in a piggery so that they grow uniformly and to determine the appropriate shipping date. In this study, a prototype system was developed to automatically measure daily weight distribution. If the weight distribution in the piggery is known, appropriate shipping dates can be determined. This paper reports the results of a valid experiment using the developed system.

生猪分拣系统有三个出口,配有 RGB-D 传感器,可在育肥期间持续使用
在养猪生产中,每个猪场饲养的猪的数量在增加,但从事养猪生产的工人却在减少,因此预计劳动力会减少。另一方面,提高猪的分级和盈利能力也很重要。重量是猪分级的主要标准。太重或太轻都会降低利润,因此需要以适当的重量装运猪只。然而,由于每头猪的重量超过 100 千克,因此称量每头猪的重量非常耗费人力。在大型养猪场,一个猪舍要饲养 50 多头猪,在确定哪一天达到适当的装运重量后,再同时装运。为了提高盈利能力,必须控制猪舍中猪的生长,使其均匀生长,并确定适当的装运日期。本研究开发了一个原型系统,用于自动测量每天的体重分布。如果知道猪舍中的体重分布,就可以确定适当的出栏日期。本文报告了使用所开发系统进行有效实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信