{"title":"Poisoning attack on VIMT and its adverse effect","authors":"Taichi Ikezaki, Osamu Kaneko, Kenji Sawada, Junya Fujita","doi":"10.1007/s10015-023-00914-7","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, various approaches have been proposed to design control systems that directly utilize data without mathematical plant models. Data-driven control involves updating or redesigning a controller using actual operating data, enabling fine-tuning control systems and achieving desired characteristics. However, the increasing prevalence of cyber-attacks targeting control systems presents significant societal challenges. A study by Russo and Proutiere (in Proceeding of American Control Conference (ACC), 2021) showed a poisoning approach targeting virtual reference feedback tuning, a data-driven control method. The study suggests that compromising the data used in the data-driven method may result in the closed-loop performance failing to achieve desired specifications and, in the worst case, destabilizing the control system. Hence, investigating the adverse effects of cyber-attacks on data employed in data-driven methods becomes crucial. This study explores the impact of a poisoning attack on the data used in the data-driven control method, specifically emphasizing virtual internal model tuning as a representative data-driven control approach.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"29 1","pages":"168 - 176"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00914-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, various approaches have been proposed to design control systems that directly utilize data without mathematical plant models. Data-driven control involves updating or redesigning a controller using actual operating data, enabling fine-tuning control systems and achieving desired characteristics. However, the increasing prevalence of cyber-attacks targeting control systems presents significant societal challenges. A study by Russo and Proutiere (in Proceeding of American Control Conference (ACC), 2021) showed a poisoning approach targeting virtual reference feedback tuning, a data-driven control method. The study suggests that compromising the data used in the data-driven method may result in the closed-loop performance failing to achieve desired specifications and, in the worst case, destabilizing the control system. Hence, investigating the adverse effects of cyber-attacks on data employed in data-driven methods becomes crucial. This study explores the impact of a poisoning attack on the data used in the data-driven control method, specifically emphasizing virtual internal model tuning as a representative data-driven control approach.