{"title":"基于深度强化学习的自动驾驶船舶避障路线规划","authors":"Ryosuke Saga, Rinto Kozono, Yutaro Tsurumi, Yasunori Nihei","doi":"10.1007/s10015-023-00909-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a method to enables the generation of short-length routes with consideration of obstacle avoidance and significantly reduces the computation time compared to existing research for ocean route optimization. The reduced computation time allows recalculation of routes for autonomous vessel underway. By simulating the recalculation of four cases of the vessel underway that may require recalculation, this paper demonstrates that the proposed method can generate new and superior routes for the vessel that needs to change their routes due to certain factors.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-reinforcement learning-based route planning with obstacle avoidance for autonomous vessels\",\"authors\":\"Ryosuke Saga, Rinto Kozono, Yutaro Tsurumi, Yasunori Nihei\",\"doi\":\"10.1007/s10015-023-00909-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a method to enables the generation of short-length routes with consideration of obstacle avoidance and significantly reduces the computation time compared to existing research for ocean route optimization. The reduced computation time allows recalculation of routes for autonomous vessel underway. By simulating the recalculation of four cases of the vessel underway that may require recalculation, this paper demonstrates that the proposed method can generate new and superior routes for the vessel that needs to change their routes due to certain factors.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-023-00909-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00909-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep-reinforcement learning-based route planning with obstacle avoidance for autonomous vessels
This paper proposes a method to enables the generation of short-length routes with consideration of obstacle avoidance and significantly reduces the computation time compared to existing research for ocean route optimization. The reduced computation time allows recalculation of routes for autonomous vessel underway. By simulating the recalculation of four cases of the vessel underway that may require recalculation, this paper demonstrates that the proposed method can generate new and superior routes for the vessel that needs to change their routes due to certain factors.