Yuan Huang, Cheng-Tien Tsao, Tianyu Shen, Hee-Hyol Lee
{"title":"Neural-network-driven method for optimal path planning via high-accuracy region prediction","authors":"Yuan Huang, Cheng-Tien Tsao, Tianyu Shen, Hee-Hyol Lee","doi":"10.1007/s10015-023-00915-6","DOIUrl":null,"url":null,"abstract":"<div><p>Sampling-based path planning algorithms suffer from heavy reliance on uniform sampling, which accounts for unreliable and time-consuming performance, especially in complex environments. Recently, neural-network-driven methods predict regions as sampling domains to realize a non-uniform sampling and reduce calculation time. However, the accuracy of region prediction hinders further improvement. We propose a sampling-based algorithm, abbreviated to Region Prediction Neural Network RRT* (RPNN-RRT*), to rapidly obtain the optimal path based on a high-accuracy region prediction. First, we implement a region prediction neural network (RPNN), to predict accurate regions for the RPNN-RRT*. A full-layer channel-wise attention module is employed to enhance the feature fusion in the concatenation between the encoder and decoder. Moreover, a three-level hierarchy loss is designed to learn the pixel-wise, map-wise, and patch-wise features. A dataset, named Complex Environment Motion Planning, is established to test the performance in complex environments. Ablation studies and test results show that a high accuracy of 89.13% is achieved by the RPNN for region prediction, compared with other region prediction models. In addition, the RPNN-RRT* performs in different complex scenarios, demonstrating significant and reliable superiority in terms of the calculation time, sampling efficiency, and success rate for optimal path planning.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"29 1","pages":"12 - 21"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00915-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sampling-based path planning algorithms suffer from heavy reliance on uniform sampling, which accounts for unreliable and time-consuming performance, especially in complex environments. Recently, neural-network-driven methods predict regions as sampling domains to realize a non-uniform sampling and reduce calculation time. However, the accuracy of region prediction hinders further improvement. We propose a sampling-based algorithm, abbreviated to Region Prediction Neural Network RRT* (RPNN-RRT*), to rapidly obtain the optimal path based on a high-accuracy region prediction. First, we implement a region prediction neural network (RPNN), to predict accurate regions for the RPNN-RRT*. A full-layer channel-wise attention module is employed to enhance the feature fusion in the concatenation between the encoder and decoder. Moreover, a three-level hierarchy loss is designed to learn the pixel-wise, map-wise, and patch-wise features. A dataset, named Complex Environment Motion Planning, is established to test the performance in complex environments. Ablation studies and test results show that a high accuracy of 89.13% is achieved by the RPNN for region prediction, compared with other region prediction models. In addition, the RPNN-RRT* performs in different complex scenarios, demonstrating significant and reliable superiority in terms of the calculation time, sampling efficiency, and success rate for optimal path planning.