{"title":"An evolutionary robotics approach to a multi-legged robotic swarm in a rough terrain environment","authors":"Daichi Morimoto, Haruhi Tsukamoto, Motoaki Hiraga, Kazuhiro Ohkura, Masaharu Munetomo","doi":"10.1007/s10015-023-00906-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates a controller design of a multi-legged robotic swarm in a rough terrain environment. Many studies in swarm robotics are conducted with mobile robots that work in relatively flat fields. This paper focuses on a multi-legged robotic swarm, which is expected to operate not only in a flat field but also in rough terrain environments. However, designing a robot controller becomes a challenging problem because a designer has to consider how to coordinate a large number of joints in a robot, besides the complexity of a swarm problem. This paper employed an evolutionary robotics approach for the automatic design of a robot controller. The experiments were conducted by computer simulations with the path formation task. The results showed that the proposed approach succeeds in generating collective behavior in flat and rough terrain environments.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"28 4","pages":"661 - 668"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00906-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates a controller design of a multi-legged robotic swarm in a rough terrain environment. Many studies in swarm robotics are conducted with mobile robots that work in relatively flat fields. This paper focuses on a multi-legged robotic swarm, which is expected to operate not only in a flat field but also in rough terrain environments. However, designing a robot controller becomes a challenging problem because a designer has to consider how to coordinate a large number of joints in a robot, besides the complexity of a swarm problem. This paper employed an evolutionary robotics approach for the automatic design of a robot controller. The experiments were conducted by computer simulations with the path formation task. The results showed that the proposed approach succeeds in generating collective behavior in flat and rough terrain environments.