Deep-reinforcement learning-based route planning with obstacle avoidance for autonomous vessels

Pub Date : 2023-10-26 DOI:10.1007/s10015-023-00909-4
Ryosuke Saga, Rinto Kozono, Yutaro Tsurumi, Yasunori Nihei
{"title":"Deep-reinforcement learning-based route planning with obstacle avoidance for autonomous vessels","authors":"Ryosuke Saga,&nbsp;Rinto Kozono,&nbsp;Yutaro Tsurumi,&nbsp;Yasunori Nihei","doi":"10.1007/s10015-023-00909-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a method to enables the generation of short-length routes with consideration of obstacle avoidance and significantly reduces the computation time compared to existing research for ocean route optimization. The reduced computation time allows recalculation of routes for autonomous vessel underway. By simulating the recalculation of four cases of the vessel underway that may require recalculation, this paper demonstrates that the proposed method can generate new and superior routes for the vessel that needs to change their routes due to certain factors.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-023-00909-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method to enables the generation of short-length routes with consideration of obstacle avoidance and significantly reduces the computation time compared to existing research for ocean route optimization. The reduced computation time allows recalculation of routes for autonomous vessel underway. By simulating the recalculation of four cases of the vessel underway that may require recalculation, this paper demonstrates that the proposed method can generate new and superior routes for the vessel that needs to change their routes due to certain factors.

分享
查看原文
基于深度强化学习的自动驾驶船舶避障路线规划
与现有的海洋航线优化研究相比,本文提出的方法能够在考虑避障的情况下生成短程航线,并显著缩短计算时间。计算时间缩短后,可以重新计算自主航行船只的航线。通过模拟四种可能需要重新计算的航行中船只的情况,本文证明了所提出的方法可以为因某些因素而需要改变航线的船只生成新的和更优的航线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信