IEEE Transactions on Device and Materials Reliability最新文献

筛选
英文 中文
Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices 电气和电子工程师学会电子器件期刊》智能传感器系统特刊
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405612
{"title":"Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices","authors":"","doi":"10.1109/TDMR.2024.3405612","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405612","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"354-355"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405820
{"title":"Blank Page","authors":"","doi":"10.1109/TDMR.2024.3405820","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405820","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C4-C4"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Device and Materials Reliability Information for Authors IEEE 《器件与材料可靠性》期刊为作者提供的信息
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405819
{"title":"IEEE Transactions on Device and Materials Reliability Information for Authors","authors":"","doi":"10.1109/TDMR.2024.3405819","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405819","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566483","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial TDMR IIRW Special Section 特约编辑 TDMR IIRW 特辑
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3407548
Charles LaRow
{"title":"Guest Editorial TDMR IIRW Special Section","authors":"Charles LaRow","doi":"10.1109/TDMR.2024.3407548","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3407548","url":null,"abstract":"The IEEE International Integrated Reliability Workshop (IIRW) is a distinctive event which brings together reliability researchers, professionals, and students from around the globe to a common forum for lively discussions, wonderful technical presentations, and beautiful scenery for 4 days and nights. The event takes place every year at Fallen Leaf Lake in South Lake Tahoe, CA, USA, where attendees are housed within a secluded camp with informal meeting spaces and access to boats, trails, and many other outdoor activities. The scope of content centers around hot topics in, novel techniques for, and general knowledge on semiconductor reliability research and industry challenges. Talks on transistor and front-end-of-the-line (FEOL) reliability, bias temperature instability (BTI), hot carrier (HC), gate dielectric time-dependent dielectric breakdown (TDDB), back-end-of-the-line (BEOL) reliability, Interconnect TDDB, electro-migration (EM), circuit reliability, packaging reliability, conventional and emerging memory reliability, failure analysis (FA), wafer-level reliability (WLR), among other topic are presented. The key focus areas at IIRW 2023 were Advanced node scaling solutions (FEOL/MOL/BEOL), circuit reliability (device-circuit degradation and aging).","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"159-160"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Device and Materials Reliability Publication Information IEEE 器件与材料可靠性期刊》出版信息
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405818
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2024.3405818","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405818","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers 半导体制造设计 (DFM) 特刊 联合征稿
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3412348
{"title":"Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers","authors":"","doi":"10.1109/TDMR.2024.3412348","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3412348","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"356-356"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566482","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-Parameter Patterns 通过处理 S 参数模式进行氧化铟锡电极故障检测和根本原因分析的实证研究
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-17 DOI: 10.1109/TDMR.2024.3415049
Tae Yeob Kang;Haebom Lee;Sungho Suh
{"title":"An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-Parameter Patterns","authors":"Tae Yeob Kang;Haebom Lee;Sungho Suh","doi":"10.1109/TDMR.2024.3415049","DOIUrl":"10.1109/TDMR.2024.3415049","url":null,"abstract":"In the field of optoelectronics, indium tin oxide (ITO) electrodes play a crucial role in various applications, such as displays, sensors, and solar cells. Effective fault diagnosis and root cause analysis of the ITO electrodes are essential to ensure the performance and reliability of the devices. However, traditional visual inspection is challenging with transparent ITO electrodes, and existing fault diagnosis methods have limitations in determining the root causes of the defects, often requiring destructive evaluations and secondary material characterization techniques. In this study, a fault diagnosis method with root cause analysis is proposed using scattering parameter (S-parameter) patterns, offering early detection, high diagnostic accuracy, and noise robustness. A comprehensive S-parameter pattern database is obtained according to various defect states of the ITO electrodes. Deep learning (DL) approaches, including multilayer perceptron (MLP), convolutional neural network (CNN), and transformer, are then used to simultaneously analyze the cause and severity of defects. Notably, it is demonstrated that the diagnostic performance under additive noise levels can be significantly enhanced by combining different channels of the S-parameters as input to the learning algorithms, as confirmed through the t-distributed stochastic neighbor embedding (t-SNE) dimension reduction visualization of the S-parameter patterns.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"380-389"},"PeriodicalIF":2.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of Threshold Voltage Degradation of 22nm FD-SOI nMOSFETs Under Dynamic Voltage Scaling 动态电压扩展下 22 纳米 FD-SOI nMOSFET 的阈值电压衰减建模
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-13 DOI: 10.1109/TDMR.2024.3414181
Yibo Hu;Hao Ge;Zhipeng Ren;Yizhe Yin;Jing Chen
{"title":"Modeling of Threshold Voltage Degradation of 22nm FD-SOI nMOSFETs Under Dynamic Voltage Scaling","authors":"Yibo Hu;Hao Ge;Zhipeng Ren;Yizhe Yin;Jing Chen","doi":"10.1109/TDMR.2024.3414181","DOIUrl":"10.1109/TDMR.2024.3414181","url":null,"abstract":"In this work, we investigated a compact model for characterizing Positive Bias Temperature Instability (PBTI) in 22nm FD-SOI nMOSFETs under dynamic voltage scaling (DVS). This model exhibits high flexibility in predicting PBTI-related threshold voltage degradation in both DC and DVS operations. We measured the impact of time-varying stress and recovery bias conditions, revealing a robust correlation between degradation and relaxation. We integrated the coupling of interface traps and fixed charges into the model, which is deemed a significant contribution. As a result, the model demonstrates high predictive accuracy across various stress conditions, including DC/AC, multiple cycles, and different duty cycles.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"463-465"},"PeriodicalIF":2.5,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Reliability Assessment of Vertical GaN Trench MOSFETs With Thick Bottom Dielectric 厚底电介质垂直氮化镓沟槽 MOSFET 的动态可靠性评估
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-06-03 DOI: 10.1109/TDMR.2024.3408293
Yu Zhang;Renqiang Zhu;Haolan Qu;Yitian Gu;Huaxing Jiang;Kei May Lau;Xinbo Zou
{"title":"Dynamic Reliability Assessment of Vertical GaN Trench MOSFETs With Thick Bottom Dielectric","authors":"Yu Zhang;Renqiang Zhu;Haolan Qu;Yitian Gu;Huaxing Jiang;Kei May Lau;Xinbo Zou","doi":"10.1109/TDMR.2024.3408293","DOIUrl":"10.1109/TDMR.2024.3408293","url":null,"abstract":"Dynamic stability of quasi-vertical GaN trench MOSFETs featuring a thick bottom dielectric (TBD) is thoroughly investigated. Degradation in forward drain current was observed as applying gate or drain stressing voltage, and further studied by time-resolved measurements. The drain current of the device can be maintained at 79%, compared to 61% of a reference device without TBD. Meanwhile, repeated switching tests conducted within a short on-state time demonstrate that the current collapse is confined to 10% after 500 switching cycles. The current collapse is related to electron capture at the dielectric/GaN interface, and the introduction of TBD reduces the electric field within the dielectric layer and suppresses the capture process of traps. Positive gate bias-induced threshold instability of the device with and without TBD is investigated. For the device with TBD, a small positive threshold voltage shift of 1 V is obtained. In addition, the effect of drain stressing voltage on devices is also revealed. High-resolution drain current transient spectroscopy displays the drain current reduction, attributing the degradation to captured electrons in the n--GaN layer. A capture activation energy of 0.26 eV is revealed by deep level transient spectroscopy. These findings reveal the efficacy of TBD inclusion in improving gate stability of GaN MOSFETs and underscore the critical importance of high-quality epitaxial growth for ensuring the stability of vertical devices. The stability characterization serves as a valuable reference for the development of reliable quasi-vertical GaN MOSFET devices.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"358-364"},"PeriodicalIF":2.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guidelines for the Design of Random Telegraph Noise-Based True Random Number Generators 基于随机电报噪声的真正随机数生成器设计指南
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2024-04-29 DOI: 10.1109/TDMR.2024.3394576
Tommaso Zanotti;Alok Ranjan;Sean J. O’Shea;Nagarajan Raghavan;Ramesh Thamankar;Kin Leong Pey;Francesco Maria Puglisi
{"title":"Guidelines for the Design of Random Telegraph Noise-Based True Random Number Generators","authors":"Tommaso Zanotti;Alok Ranjan;Sean J. O’Shea;Nagarajan Raghavan;Ramesh Thamankar;Kin Leong Pey;Francesco Maria Puglisi","doi":"10.1109/TDMR.2024.3394576","DOIUrl":"10.1109/TDMR.2024.3394576","url":null,"abstract":"The development of a robust and secure hardware for the Internet of Things (IoT) and edge computing requires improvements in the existing low-power and low-cost hardware security primitives. Among the various available technologies, true random number generators (TRNGs) that leverage random telegraph noise (RTN) from nanoelectronics devices have emerged as effective solutions. However, the temporal instabilities in the RTN signal, such as the DC drift and temporary inhibition, are a few of the key reliability challenges for the TRNG circuits. In this study, we have utilized experimental RTN data collected from the commonly used gate dielectrics, including silicon dioxide (SiO2), hafnium dioxide (HfO2), and 2D crystalline hexagonal boron nitride (h-BN) to identify the crucial reliability challenges for RTN-based TRNG circuits. We have analyzed the impact of RTN instabilities and of circuit parameters on the output randomness and propose reliability aware design guidelines. Finally, we design and simulate an RTN-based TRNG circuit using a 130 nm CMOS technology and evaluate its reliability at the circuit level.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"184-193"},"PeriodicalIF":2.5,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信