Roshaun C. Titus;Miriam R. Rath;Rosario A. Gerhardt;J. Elliott Fowler
{"title":"Effects of Solder Mask Variability on the Electrical Response of Commercially Manufactured Interdigitated Circuits","authors":"Roshaun C. Titus;Miriam R. Rath;Rosario A. Gerhardt;J. Elliott Fowler","doi":"10.1109/TDMR.2024.3384065","DOIUrl":"10.1109/TDMR.2024.3384065","url":null,"abstract":"The use of electronics substrates, such as printed circuit boards (PCBs) in modern technology has become nearly ubiquitous. As PCBs become smaller, denser and mass produced, printed, interdigitated circuit (IDC) sensors are increasingly utilized to qualify the geometric, material and process decisions for manufacturing electronics assemblies. Despite this, the accuracy in determining reproducibility and reliability of printed circuit designs for these applications is not well studied. In this article we report on the usage of small signal ac impedance spectroscopy to determine measurement repeatability and manufactured board reproducibility as a function of frequency, humidity and solder mask coverage for a single IDC design. These measurements allowed detection of systematic changes in the electrical response as the frequency (10MHz-0.1Hz) and humidity were varied (96%-10%RH). Our ac impedance results indicate that the measurement repeatability error is better than 0.6% while circuit or board reproducibility ranges from 2.5%-5.2%. Detailed surface analysis of the circuit structures indicated that differences observed were primarily due to porosity in the solder mask as well as differences in solder coating thickness and coverage between the interdigitated combs. Results are explained by a model that considers water surface adsorption, then infusion into the pore space and finally diffusion through the solder mask as the humidity of the ambient increased. These effects were most easily detected using imaginary electric modulus M” vs log frequency plots. It is anticipated that this methodology will have application to other circuit designs, solder mask or contamination variability.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"287-301"},"PeriodicalIF":2.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Lifetime Estimation Method and Structural Optimization Design for Film Capacitors in EVs Considering Material Aging and Power Losses","authors":"Kaining Kuang;Xinhua Guo;Chunzhen Li;Xiuwan Li","doi":"10.1109/TDMR.2024.3407855","DOIUrl":"10.1109/TDMR.2024.3407855","url":null,"abstract":"Film capacitors are widely used in electric vehicles (EVs) controllers to reduce the adverse effects of ripple current on batteries and converters. But the upper limit of the working temperature for film capacitors is relatively low. High ambient temperatures in EVs can lead to premature failure of film capacitors, thereby impacting the reliability of the controllers. Therefore, proposing a corresponding capacitor lifetime prediction method is a burning issue. This paper analyzes the accumulation of damage and degradation processes in film capacitors and proposes a method to predict their lifetime, which accounts for changes in ESR, thermal conductivity, and internal losses. An analysis on a \u0000<inline-formula> <tex-math>$440mu $ </tex-math></inline-formula>\u0000F film capacitor bank is performed using this method as an example. In addition, the effectiveness of optimizing the capacitor structure to extend capacitor lifetime is analyzed based on finite element modeling (FEM), and the Monte Carlo method is employed to consider the influence of manufacturing tolerances on the reliability of film capacitors. The analysis results indicate that, compared to the original capacitor, the B10 life of the optimized capacitor can be extended by 54.11%.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"365-379"},"PeriodicalIF":2.5,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting the Degradation and Recovery Trends of the Photovoltaic Efficiency of Sb₂Se₃ Antimony Solar Cells","authors":"Ming-Lang Tseng;Nima E. Gorji","doi":"10.1109/TDMR.2024.3405659","DOIUrl":"10.1109/TDMR.2024.3405659","url":null,"abstract":"This study aims to develop empirical models and equations to predict the lifetime degradation and recovery in the energy conversion efficiency emerging Sb2Se3 based antimony solar cells which have been stressed under ambient moisture, sunlight irradiation intensities and temperature conditions. The models are extracted from empirical data reported in literature and is comprised from critical parameters which can fit with the data to elucidate on the stability behavior of antimony chalcogenide solar cells. Several models have been introduced for variation of solar cell efficiency under different irradiation from 1–10 suns and temperature conditions at 30° C, 40° C, and 50° C. The model predicts a saturation trend in degradation of solar cell efficiency which has been also modelled and formulated through empirical formulas. The efficiency degradation trends follow exponentially decreasing trends while the recovery trends show exponentially increasing trend. In contrast, the saturation efficiency follows linear models for prolonged irradiation and temperature stressing conditions. This examination of saturation in degradation and its dependence on environmental factors provides valuable insights into predicting the worst efficiency affected by seasonal changes over extended periods for antimony photovoltaics.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"656-662"},"PeriodicalIF":2.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Stampfer;Frederic Roger;Lukas Cvitkovich;Tibor Grasser;Michael Waltl
{"title":"A DLTS Study on Deep Trench Processing-Induced Trap States in Silicon Photodiodes","authors":"Paul Stampfer;Frederic Roger;Lukas Cvitkovich;Tibor Grasser;Michael Waltl","doi":"10.1109/TDMR.2024.3382396","DOIUrl":"10.1109/TDMR.2024.3382396","url":null,"abstract":"We present a Deep Level Transient Spectroscopy (DLTS) study on dedicated test samples to investigate the defect landscape of deep trench (DT) sidewalls. The DT is commonly used to prevent crosstalk between two neighboring optoelectronic devices or as a separator between different functional blocks on a monolithic semiconductor chip. However, in minority carrier-based optoelectronic devices, such as photodiodes, carriers might recombine at trap states located at the DT to silicon interface causing performance degradation. The extracted parameters of the DLTS study are further utilized to investigate this recombination in terms of TCAD simulations. The results suggest that carrier recombination at the DT sidewalls of DT-terminated photodiodes may lead to non-linear responsivities with respect to the optical radiant flux. Furthermore, on the example of silicon dangling bonds, we investigate the influence of structural relaxations at the defect sites which are incorporated in the nonradiative multiphonon (NMP) model. By a comparison between the NMP model to the conventional Shockley-Read-Hall (SRH) model we show, that a difference in the emission barrier of approx. 50 meV will arise, resulting in a strong shift of the corresponding DLTS transients.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"161-167"},"PeriodicalIF":2.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review: Breakdown Voltage Enhancement of GaN Semiconductors-Based High Electron Mobility Transistors","authors":"Osman Çiçek;Yosef Badali","doi":"10.1109/TDMR.2024.3379745","DOIUrl":"10.1109/TDMR.2024.3379745","url":null,"abstract":"Gallium Nitride (GaN) based High Electron Mobility Transistors (HEMTs) are regarded as fundamental semiconductor devices for future power electronic applications. Consequently, researchers have directed their efforts toward enhancing critical parameters such as the breakdown voltage \u0000<inline-formula> <tex-math>$(V_{br})$ </tex-math></inline-formula>\u0000, cut-off frequency, and operating temperature. Therefore, this review article explores research endeavors concerning the enhancement of \u0000<inline-formula> <tex-math>$V_{br}$ </tex-math></inline-formula>\u0000 in GaN-based HEMTs. The objective is to gain insights into the key factors influencing \u0000<inline-formula> <tex-math>$V_{br}$ </tex-math></inline-formula>\u0000 values and to identify the constraints that govern the optimal performance of HEMTs in power devices. Additionally, this review provides an in-depth examination of select studies that introduce novel techniques for improving \u0000<inline-formula> <tex-math>$V_{br}$ </tex-math></inline-formula>\u0000 values.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"275-286"},"PeriodicalIF":2.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cause Analysis on the Abnormal Failure of SiC Power Modules During the HV-H3TRB Tests","authors":"Jie Chen;Shuang Zhou;Zhen-Guo Yang","doi":"10.1109/TDMR.2024.3379498","DOIUrl":"10.1109/TDMR.2024.3379498","url":null,"abstract":"The SiC die has broad application prospects in new energy vehicles due to its excellent performances. In recent years, with the continuous development, the safety and reliability of SiC power modules have become particularly important and highly valued. In this paper, a case about the abnormal failure of SiC power modules during the High Voltage-High Humidity High Temperature Reverse Bias (HV-H3TRB) tests was addressed. According to the failure phenomena, a systematical investigation was conducted to explore the root cause by a series of methods such as failure point localization, synchrotron radiation infrared spectrum (SR-IR), time of flight-secondary ion mass spectrometry (TOF-SIMS), the ion beam method, scanning electron microscope (SEM) equipped with the energy dispersive spectrometer (EDS). Finally, the root cause of the failure was determined through comprehensive analysis, and based on the conclusions, some corresponding countermeasures were also proposed. Hopefully, the achievements obtained in this paper would be of great significance for improving the reliability of SiC power modules and avoiding similar failure in future manufacturing process.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"260-267"},"PeriodicalIF":2.5,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Nominations Editor-in-Chief IEEE Transactions on Device and Materials Reliability","authors":"","doi":"10.1109/TDMR.2024.3369791","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3369791","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 1","pages":"154-154"},"PeriodicalIF":2.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10463657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers","authors":"","doi":"10.1109/TDMR.2024.3371835","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3371835","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 1","pages":"155-155"},"PeriodicalIF":2.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10463653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TDMR.2024.3374489","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3374489","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 1","pages":"156-156"},"PeriodicalIF":2.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10463703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blank Page","authors":"","doi":"10.1109/TDMR.2024.3366775","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3366775","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 1","pages":"C4-C4"},"PeriodicalIF":2.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10463651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140067243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}