{"title":"Single-Event Burnout Effects of Complementary LDMOS Devices in High-Voltage Integrated Circuits","authors":"Chonghao Chen;Jiang Xu;Zhuojun Chen","doi":"10.1109/TDMR.2024.3420391","DOIUrl":null,"url":null,"abstract":"Lateral diffused metal-oxide-semiconductor (LDMOS) devices are vulnerable to single-event burnout (SEB) in radiation environments, potentially leading to catastrophic failure in high-voltage integrated circuits (HVICs). Pulsed-laser experiments have demonstrated that the SEB triggering voltage of n-type LDMOS (nLDMOS) is significantly lower than that of p-type LDMOS (pLDMOS), which limits the applications of complementary LDMOS devices in aerospace electronic systems. This work investigates the SEB mechanism in both nLDMOS and pLDMOS through technology computer-aided design (TCAD) simulations. The analysis reveals that differences in the current gain of parasitic bipolar transistors and well resistance between pLDMOS and nLDMOS result in varying SEB triggering voltages. Additionally, a radiation-hardening technique is employed to improve the SEB triggering voltage of nLDMOS, aligning it closely with that of pLDMOS. This research provides insight into the design of radiation-hardened high-voltage integrated circuits, such as DC-DC converters and motor drivers, using a standard Bipolar-CMOS-DMOS (BCD) fabrication process.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"401-406"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10577455/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral diffused metal-oxide-semiconductor (LDMOS) devices are vulnerable to single-event burnout (SEB) in radiation environments, potentially leading to catastrophic failure in high-voltage integrated circuits (HVICs). Pulsed-laser experiments have demonstrated that the SEB triggering voltage of n-type LDMOS (nLDMOS) is significantly lower than that of p-type LDMOS (pLDMOS), which limits the applications of complementary LDMOS devices in aerospace electronic systems. This work investigates the SEB mechanism in both nLDMOS and pLDMOS through technology computer-aided design (TCAD) simulations. The analysis reveals that differences in the current gain of parasitic bipolar transistors and well resistance between pLDMOS and nLDMOS result in varying SEB triggering voltages. Additionally, a radiation-hardening technique is employed to improve the SEB triggering voltage of nLDMOS, aligning it closely with that of pLDMOS. This research provides insight into the design of radiation-hardened high-voltage integrated circuits, such as DC-DC converters and motor drivers, using a standard Bipolar-CMOS-DMOS (BCD) fabrication process.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.