IEEE Open Journal of Nanotechnology最新文献

筛选
英文 中文
Design, Fabrication and Measurement of Radio Frequency Micro-Electro-Mechanical Systems 射频微机电系统的设计、制造与测量
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-10-03 DOI: 10.1109/OJNANO.2023.3318236
Girija Sravani Kondavitee;Young Suh Song;Srinivasa Rao Karumuri;Koushik Guha;Brajesh Kumar Kaushik;Aimé Lay-Ekuakille
{"title":"Design, Fabrication and Measurement of Radio Frequency Micro-Electro-Mechanical Systems","authors":"Girija Sravani Kondavitee;Young Suh Song;Srinivasa Rao Karumuri;Koushik Guha;Brajesh Kumar Kaushik;Aimé Lay-Ekuakille","doi":"10.1109/OJNANO.2023.3318236","DOIUrl":"10.1109/OJNANO.2023.3318236","url":null,"abstract":"This article describes the fabrication and experimental results of a novel step structure Radio Frequency Microelectromechanical system (RF MEMS) switch integrated with a circular patch antenna. The RF MEMS switch is developed using surface micromachining technology and exhibits several desirable characteristics. The key findings and features of the proposed RF MEMS switch are as follows: The switch operates at a very low pull-in voltage of 4.4 V, which is advantageous as it requires low actuation voltage for switching operations. Low ON State Capacitance: The switch demonstrates a low ON state capacitance of 81.2 fF, indicating efficient switching performance. High Isolation: The switch exhibits high isolation of −60.68 dB at 23 GHz, which is the central frequency of the K-band. This high isolation ensures minimal interference and improved signal integrity. The RF MEMS switch is integrated with a circular patch antenna, enabling reconfigurability in the operating frequency of the antenna. The antenna's frequency can be adjusted by actuating the switches alternatively. The specific operating frequencies and return loss values are as follows: Both Switches ON: The antenna radiates the signal at a frequency of 19.2 GHz with a return loss of −26.7 dB. Only Switch A ON: The antenna radiates at a frequency of 21 GHz with a return loss of −17.6 dB. Only Switch B ON: The antenna radiates the signal at a frequency of 26.4 GHz with a return loss of −17.47 dB. The RF MEMS switch and antenna are optimized to transmit RF signals within the K-band frequency range. The integration of the step structured RF MEMS switches successfully enables reconfiguration of the antenna's operating frequency. The proposed antenna, integrated with the RF MEMS switches, has potential applications in various K-band systems, including surface movement radars, direct broadcast satellite, Direct-to-Home (DHT) television, and 5th Generation (5G) mobile communication. The reconfigurability of the antenna's frequency allows for flexibility and adaptability in different K-band applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"195-207"},"PeriodicalIF":1.7,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10269333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135913448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Landau Quantization Effects on the Magnetic Moment and Specific Heat of a T-3 Dice Lattice 磁朗道量化对T-3格子磁矩和比热的影响
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-09-27 DOI: 10.1109/OJNANO.2023.3316877
Norman J. M. Horing;M. L. Glasser
{"title":"Magnetic Landau Quantization Effects on the Magnetic Moment and Specific Heat of a T-3 Dice Lattice","authors":"Norman J. M. Horing;M. L. Glasser","doi":"10.1109/OJNANO.2023.3316877","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3316877","url":null,"abstract":"In this work we analyze the statistical thermodynamic functions and magnetic moment of a Dice lattice subject to a normal quantizing magnetic field. Our analysis addresses the Grand Potential and Helmholtz Free Energy, as well as the magnetic moment, entropy and specific heat at constant volume, explicitly determining their magnetic field dependencies in the degenerate statistical regime, replete with de Haas-van Alphen oscillatory phenomenology (and other magnetic field dependence); and also determining their temperature dependencies jointly with magnetic field features in the approach to the zero temperature limit. Furthermore, we evaluate the Grand Potential exactly, for arbitrary temperature and density. Our results are obtained with consideration of the presence of heat and particle baths with fixed chemical potential and they are discussed in relation to other pertinent work on the subject.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"156-161"},"PeriodicalIF":1.7,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10265748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109156927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Performance of E-Mode AlGaN/GaN HEMTs With Recessed Gates Through Low-Damage Neutral Beam Etching and Post-Metallization Annealing 通过低损伤中性束蚀刻和后金属化退火提高带凹槽栅极的e型AlGaN/GaN hemt的性能
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-08-17 DOI: 10.1109/OJNANO.2023.3306011
Yi-Ho Chen;Daisuke Ohori;Muhammad Aslam;Yao-Jen Lee;Yiming Li;Seiji Samukawa
{"title":"Enhancing the Performance of E-Mode AlGaN/GaN HEMTs With Recessed Gates Through Low-Damage Neutral Beam Etching and Post-Metallization Annealing","authors":"Yi-Ho Chen;Daisuke Ohori;Muhammad Aslam;Yao-Jen Lee;Yiming Li;Seiji Samukawa","doi":"10.1109/OJNANO.2023.3306011","DOIUrl":"10.1109/OJNANO.2023.3306011","url":null,"abstract":"This study investigated the electrical properties of AlGaN/GaN high-electron-mobility transistors (HEMTs) with varied recess depths under the gate electrode. We demonstrated a recess depth of approximately 6 nm, which was achieved through neutral beam etching (NBE) technique with a low etch rate of 1.8 nm/min, resulting in device enhancement-mode (E-mode) behavior with threshold voltage (V\u0000<sub>th</sub>\u0000) of 0.49 V. The effects of post-metallization annealing (PMA) on the device performance were also examined. The results revealed that PMA treatment improves the DC characteristics of the devices, including maximum drain current (I\u0000<sub>DMAX</sub>\u0000), transconductance (g\u0000<sub>m</sub>\u0000), subthreshold swing (SS), on-off ratio, and off-state leakage current, with maximum enhancement percentage of 18.3% for I\u0000<sub>DMAX</sub>\u0000, 3758% for on-off ratio, and 54.3% for SS. Moreover, this study compared the recess depths of metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with the SiN dielectric layer. The results showed that MIS-HEMTs exhibit more negative V\u0000<sub>th</sub>\u0000 values, which can be attributed to the controlled surface states achieved through passivation.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"150-155"},"PeriodicalIF":1.7,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10223256","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring by AgNPs of the Energetics of Charge Carriers in Electrically Insulating Polymers at the Electrode/Dielectric Contact AgNPs对电极/介电接触处电绝缘聚合物中载流子能量的裁剪
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-06-08 DOI: 10.1109/OJNANO.2023.3284201
Kremena Makasheva;Christina Villeneuve-Faure;Adriana Scarangella;Luca Montanari;Laurent Boudou;Gilbert Teyssedre
{"title":"Tailoring by AgNPs of the Energetics of Charge Carriers in Electrically Insulating Polymers at the Electrode/Dielectric Contact","authors":"Kremena Makasheva;Christina Villeneuve-Faure;Adriana Scarangella;Luca Montanari;Laurent Boudou;Gilbert Teyssedre","doi":"10.1109/OJNANO.2023.3284201","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3284201","url":null,"abstract":"The ever increasing field of application of nanodielectrics in electrical insulations calls for description of the mechanisms underlying the performance of these systems and for identification of the signs exposing their aging under high electric fields. Such approach is of particular interest to electrically insulating polymers because their chemical defects are of deleterious nature for their electrical properties and can largely degrade their performance at high electric fields. Although these defects usually leave spectroscopic signatures in terms of characteristic luminescence peaks, it is nontrivial to assign, in an unambiguous way, the identified peaks to specific chemical groups or defects because of the low intensity of the signal with the main reason being that the insulating polymers are weakly emitting materials under electric field. In this work, we go beyond the conventional electroluminescence technique to record spectroscopic features of insulating polymers. By introducing a single plane of silver nanoparticles (AgNPs) at the near-surface of thin polypropylene films, the electroluminescent signal is strongly enhanced by surface plasmons processes. The presence of AgNPs leads not only to a much higher electroluminescence intensity but also to a strong decrease of the electric field threshold for detection of light emission and to a phase-stabilization of the recorded spectra, thus improving the assignment of the characteristic luminescence peaks. Besides, the performed analyses bring evidence on the capability of AgNPs to trap and eject charges, and on the possibility to adjust the energetics of charge carriers in electrically insulating polymers at the electrode/dielectric contact via AgNPs.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"133-149"},"PeriodicalIF":1.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10146436.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3516656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Efficient Spin-Based Implementation of Neuromorphic Functions in CNNs cnn中基于能量高效自旋的神经形态函数实现
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-03-27 DOI: 10.1109/OJNANO.2023.3261959
Sandeep Soni;Gaurav Verma;Hemkant Nehete;Brajesh Kumar Kaushik
{"title":"Energy Efficient Spin-Based Implementation of Neuromorphic Functions in CNNs","authors":"Sandeep Soni;Gaurav Verma;Hemkant Nehete;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2023.3261959","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3261959","url":null,"abstract":"Convolutional neural networks (CNNs) offer potentially a better accuracy alternative for conventional deep learning tasks. The hardware implementation of CNN functionalities with conventional CMOS based devices still lags in area and energy efficiency. This has necessitated the investigations of unconventional devices, circuits, and architectures to efficiently mimic the functionality of neurons and synapses for neuromorphic applications. Spin-orbit torque magnetic tunnel junction (SOT-MTJ) device is capable of achieving energy and area efficient rectified linear unit (ReLU) activation functionality. This work utilizes the SOT-MTJ based ReLU for activation and max-pooling in a single unit to eliminate the need of dedicated hardware for pooling layer. Moreover, 2 × 2 multiply-accumulate-activate-pool (MAAP) is implemented by using four activation pairs each of which is fed by the crossbar output. The presented approach has been used to implement various CNN architectures and evaluated for CIFAR-10 image classification. The number of read/write operations reduce significantly by 2X in MAAP based CNN architectures. The results show that the area and energy in MAAP based CNN is improved by at least 25% and 82.9%, respectively, when compared with conventional CNN designs.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"102-108"},"PeriodicalIF":1.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10081384.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3516685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metallic CNT Tolerant Field Effect Transistor Using Dielectrophoresis 采用介质电泳技术的金属碳纳米管容容场效应晶体管
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-03-13 DOI: 10.1109/OJNANO.2023.3256410
Shobhit Kareer;Jeongwon Park
{"title":"Metallic CNT Tolerant Field Effect Transistor Using Dielectrophoresis","authors":"Shobhit Kareer;Jeongwon Park","doi":"10.1109/OJNANO.2023.3256410","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3256410","url":null,"abstract":"The performance of silicon-based transistors is reaching its limit, and new materials like carbon nanotubes (CNTs) have started emerging to replace them in electronic products. However, the precise manipulation of CNTs requires complicated techniques, which increases process variation. These variations can lead to a decrease in the overall yield of the field-effect transistor (FET). This study shows how a low-frequency signal may regulate the number of CNTs on electrodes with a nanometer scale. We also demonstrate using an interdigitated electrode to reduce the shorts caused by metallic CNTs. The fabricated CNFETs were characterized using SEM, AFM, and I-V measurements. The study also demonstrates how the duration and amplitude of the applied signal impact the density of CNTs on the electrodes. Finally, finite element analysis was used to evaluate the electric field parameters during DEP. This technique will lead to precise CNTs per unit area, which can help fabricate transistors, sensors, and other electronic components.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"95-101"},"PeriodicalIF":1.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10068299.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3515774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Nanoparticles Mediated Thrombolysis–A Review 磁性纳米颗粒介导的血栓溶解——综述
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-03-08 DOI: 10.1109/OJNANO.2023.3273921
Bohua Zhang;Xiaoning Jiang
{"title":"Magnetic Nanoparticles Mediated Thrombolysis–A Review","authors":"Bohua Zhang;Xiaoning Jiang","doi":"10.1109/OJNANO.2023.3273921","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3273921","url":null,"abstract":"Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of \u0000<italic>in vitro</i>\u0000 and \u0000<italic>in vivo</i>\u0000 thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"109-132"},"PeriodicalIF":1.7,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10120760.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3516978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Materials & Devices for Advanced Flexible Sensors 嘉宾评论:先进柔性传感器的材料与器件
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-02-03 DOI: 10.1109/OJNANO.2023.3238959
Yu Xinge
{"title":"Guest Editorial: Materials & Devices for Advanced Flexible Sensors","authors":"Yu Xinge","doi":"10.1109/OJNANO.2023.3238959","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3238959","url":null,"abstract":"The papers in this special section focus on materials and devices for flexible sensors. Presents recent advances in skin electronics, touch sensors for flexible display, near-infrared spectroscopy (NIRS) and organic electrochemical transistors (OECT), respectively. Three research article introduces new methods in flexible pressure sensing array, ammonia sensors and charge plasma junctionless tunnel field effect transistor (CP JLTFET), respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"23-24"},"PeriodicalIF":1.7,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10036332.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3508121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dirac Materials and an Identity for the Grand Potential of the Nondegenerate Statistical Thermodynamic Regime 狄拉克材料与非简并统计热力学体系的大势恒等式
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-01-10 DOI: 10.1109/OJNANO.2023.3234042
NORMAN J. M. HORING
{"title":"Dirac Materials and an Identity for the Grand Potential of the Nondegenerate Statistical Thermodynamic Regime","authors":"NORMAN J. M. HORING","doi":"10.1109/OJNANO.2023.3234042","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3234042","url":null,"abstract":"We examine the question “Can Dirac materials exist in a nondegenerate statistical state?,” deriving and employing an identity for the thermodynamic Grand Potential \u0000<inline-formula><tex-math>$Omega$</tex-math></inline-formula>\u0000 (per unit volume/area) in the low density nondegenerate statistical regime, relating it to the density \u0000<inline-formula><tex-math>$n$</tex-math></inline-formula>\u0000 as \u0000<inline-formula><tex-math>$Omega = -beta ^{-1} n$</tex-math> </inline-formula>\u0000 (\u0000<inline-formula><tex-math>$beta ^{-1} = kappa _{B} T$</tex-math></inline-formula>\u0000 is thermal energy, \u0000<inline-formula><tex-math>$kappa _{B}$</tex-math></inline-formula>\u0000 is the Boltzmann constant, and \u0000<inline-formula><tex-math>$T$</tex-math></inline-formula>\u0000 is Kelvin temperature). The implications of this identity for Dirac materials are explored. The identity is universally valid for all thermodynamic systems in equilibrium in the nondegenerate, low density statistical regime, irrespective of size, dimensionality or applied static fields. Phenomena that may contribute to the realization of such a nondegenerate statistical equilibrium state in Dirac materials are discussed.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"77-80"},"PeriodicalIF":1.7,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10014530.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3496406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greenhouse Gas Detection Based on Infrared Nanophotonic Devices 基于红外纳米光子器件的温室气体检测
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2023-01-06 DOI: 10.1109/OJNANO.2022.3233485
Chunhui Hao;Xiao Fu;Xiaoyong Jiang;Yutong Li;Juyi Sun;Haitao Wu;He Zhu;Qing Li;Yunhai Li;Zhangcheng Huang;Fang Zhong;Ting He;Jinshui Miao;Weida Hu
{"title":"Greenhouse Gas Detection Based on Infrared Nanophotonic Devices","authors":"Chunhui Hao;Xiao Fu;Xiaoyong Jiang;Yutong Li;Juyi Sun;Haitao Wu;He Zhu;Qing Li;Yunhai Li;Zhangcheng Huang;Fang Zhong;Ting He;Jinshui Miao;Weida Hu","doi":"10.1109/OJNANO.2022.3233485","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3233485","url":null,"abstract":"Most greenhouse gases come from biological activities and industry which will lead to global warming and show an impact on human life. With the need of green transformation of the global economic structure and seeking for higher quality of human life, the detection and management of greenhouse gases, as well as most hazardous gases in the environment, are increasingly demanding. Applications in different fields require sensors that can detect gas volume fractions with magnitudes from 10–9 to 10–4. Greenhouse gas detection plays an important role both in the agriculture and industry field. In this review, we first summarize the mechanism of several common gas detectors used currently. Then, the advantages of nanostructured gas sensors are discussed. Finally, the applications of infrared gas sensors based on nanophotonic devices are described in detail. This review has been an outlook on the future development of infrared gas sensors based on nanophotonic devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"10-22"},"PeriodicalIF":1.7,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/10007543/10009893.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3508119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信