Analysis and Design of FeFET Synapse With Stacked-Nanosheet Architecture Considering Cycle-to-Cycle Variations for Neuromorphic Applications

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Heng Li Lin;Pin Su
{"title":"Analysis and Design of FeFET Synapse With Stacked-Nanosheet Architecture Considering Cycle-to-Cycle Variations for Neuromorphic Applications","authors":"Heng Li Lin;Pin Su","doi":"10.1109/OJNANO.2024.3399559","DOIUrl":null,"url":null,"abstract":"Using extensive Monte-Carlo simulations with a nucleation-limited-switching (NLS) ferroelectric model and considering cycle-to-cycle variations, this paper constructs and analyzes the intrinsic conductance (G\n<sub>DS</sub>\n) response of stacked-nanosheet FeFET synapses with emphasis on the challenging identical-pulse stimulation. Our study indicates that the interlayer oxide thickness of the FeFET and the saturation polarization of the ferroelectric are crucial to the linearity and symmetry of the intrinsic G\n<sub>DS</sub>\n response. With the stacked-nanosheet architecture, the maximum-to-minimum conductance ratio in the G\n<sub>DS</sub>\n response can be boosted by increasing the number of channel tiers without footprint penalty. For a stacked-nanosheet FeFET synapse with an area ratio effect, the G\n<sub>DS</sub>\n response can be further engineered by varying the tier number. In addition, the immunity to cycle-to-cycle variations and the noise margin for each state in the G\n<sub>DS</sub>\n response can also be improved by increasing the number of tiers. Our study may provide insights for future FeFET synapse design for analog computing.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528861","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10528861/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using extensive Monte-Carlo simulations with a nucleation-limited-switching (NLS) ferroelectric model and considering cycle-to-cycle variations, this paper constructs and analyzes the intrinsic conductance (G DS ) response of stacked-nanosheet FeFET synapses with emphasis on the challenging identical-pulse stimulation. Our study indicates that the interlayer oxide thickness of the FeFET and the saturation polarization of the ferroelectric are crucial to the linearity and symmetry of the intrinsic G DS response. With the stacked-nanosheet architecture, the maximum-to-minimum conductance ratio in the G DS response can be boosted by increasing the number of channel tiers without footprint penalty. For a stacked-nanosheet FeFET synapse with an area ratio effect, the G DS response can be further engineered by varying the tier number. In addition, the immunity to cycle-to-cycle variations and the noise margin for each state in the G DS response can also be improved by increasing the number of tiers. Our study may provide insights for future FeFET synapse design for analog computing.
考虑到神经形态应用中周期间变化的叠层纳米片架构 FeFET 突触的分析与设计
本文利用成核限制开关(NLS)铁电模型进行了大量蒙特卡洛模拟,并考虑了周期之间的变化,构建并分析了叠层纳米片 FeFET 突触的本征电导(GDS)响应,重点研究了具有挑战性的相同脉冲刺激。我们的研究表明,FeFET 的层间氧化物厚度和铁电体的饱和极化对本征 GDS 响应的线性和对称性至关重要。采用叠层纳米片结构,可以通过增加沟道层数来提高 GDS 响应中的最大与最小电导比,而不会对基底面造成影响。对于具有面积比效应的叠层纳米片 FeFET 突触,可以通过改变层数进一步设计 GDS 响应。此外,GDS 响应中每个状态对周期变化的抗扰度和噪声裕度也可以通过增加层数来改善。我们的研究可为未来模拟计算的 FeFET 突触设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信