Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder
{"title":"特定 PM2.5 污染物对单层/双层 ArGNR 的影响","authors":"Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder","doi":"10.1109/OJNANO.2023.3336366","DOIUrl":null,"url":null,"abstract":"Elevated Particular Matter (PM\n<sub>2.5</sub>\n) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM\n<sub>2.5</sub>\n contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM\n<sub>2.5</sub>\n contaminants, the CH\n<sub>4</sub>\n, NH\n<sub>3</sub>\n, and NO\n<sub>2</sub>\n molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are \n<inline-formula><tex-math>$ \\pm 110\\,\\text{eV}, \\pm 65{\\rm{ eV}}, \\pm 80{\\rm{ eV}}$</tex-math></inline-formula>\n, and at the P site are \n<inline-formula><tex-math>$ \\pm 130$</tex-math></inline-formula>\n eV, \n<inline-formula><tex-math>$ \\pm 300$</tex-math></inline-formula>\n eV and \n<inline-formula><tex-math>$ \\pm 80$</tex-math></inline-formula>\n eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH\n<sub>4</sub>\n, NH\n<sub>3,</sub>\n and NO\n<sub>2</sub>\n, respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"215-228"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328676","citationCount":"0","resultStr":"{\"title\":\"Impact of Specific PM2.5 Contaminant on Monolayer/Bilayer ArGNR\",\"authors\":\"Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder\",\"doi\":\"10.1109/OJNANO.2023.3336366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevated Particular Matter (PM\\n<sub>2.5</sub>\\n) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM\\n<sub>2.5</sub>\\n contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM\\n<sub>2.5</sub>\\n contaminants, the CH\\n<sub>4</sub>\\n, NH\\n<sub>3</sub>\\n, and NO\\n<sub>2</sub>\\n molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are \\n<inline-formula><tex-math>$ \\\\pm 110\\\\,\\\\text{eV}, \\\\pm 65{\\\\rm{ eV}}, \\\\pm 80{\\\\rm{ eV}}$</tex-math></inline-formula>\\n, and at the P site are \\n<inline-formula><tex-math>$ \\\\pm 130$</tex-math></inline-formula>\\n eV, \\n<inline-formula><tex-math>$ \\\\pm 300$</tex-math></inline-formula>\\n eV and \\n<inline-formula><tex-math>$ \\\\pm 80$</tex-math></inline-formula>\\n eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH\\n<sub>4</sub>\\n, NH\\n<sub>3,</sub>\\n and NO\\n<sub>2</sub>\\n, respectively.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"4 \",\"pages\":\"215-228\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328676\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10328676/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10328676/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高浓度的微粒物质(PM2.5)可能会增加人们获得有害健康影响的风险,因此对微小污染物的高性能监测可能会保护人们的健康。本研究利用氢钝化层分析了特定 PM2.5 污染物在掺杂/未掺杂单层/双层臂向石墨烯纳米带(ArGNR)上的吸附行为。通过使用第一原理密度泛函理论(DFT),仔细研究了掺杂对 ArGNR 衬底的影响。由于表面原子比较脆弱,单层 ArGNR 的吸附能大约是双层结构的两倍。然而,特定的 PM2.5 污染物、CH4、NH3 和 NO2 分子的化学吸附能分别为 -2 eV、-2.95 eV 和 -4 eV,带隙变化极小,分别为 -65% 至 -70% 和 -100%,电荷转移量极大,分别为 +0.153 eV、+0.156 eV 和 +0.010 eV,在硼磷(BP)共掺杂单层 ArGNR 上,CH4、NH3 和 NO2 在 B 位的 DOS 峰分别为 $\pm 110\,\text{eV}, \pm 65{\rm{ eV}}, \pm 80{\rm{ eV}}$ ,在 P 位的 DOS 峰分别为 $\pm 130$ eV, $\pm 300$ eV 和 $\pm 80$ eV。
Impact of Specific PM2.5 Contaminant on Monolayer/Bilayer ArGNR
Elevated Particular Matter (PM
2.5
) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM
2.5
contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM
2.5
contaminants, the CH
4
, NH
3
, and NO
2
molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are
$ \pm 110\,\text{eV}, \pm 65{\rm{ eV}}, \pm 80{\rm{ eV}}$
, and at the P site are
$ \pm 130$
eV,
$ \pm 300$
eV and
$ \pm 80$
eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH
4
, NH
3,
and NO
2
, respectively.