D. Keith Roper;Jin-Woo Kim;Ricardo R. Romo;Joseph Batta-Mpouma
{"title":"Enhanced Optical and Infrared Activity of Nanosphere Dimers Attributed to Dimer Geometry","authors":"D. Keith Roper;Jin-Woo Kim;Ricardo R. Romo;Joseph Batta-Mpouma","doi":"10.1109/OJNANO.2024.3437164","DOIUrl":"10.1109/OJNANO.2024.3437164","url":null,"abstract":"Enhanced optical and infrared activity of subwavelength metal nanoparticles is key to their use in optoelectronics, spectroscopy, and sensing. The present work compared spectra of nanosphere dimers merged by centrifuging gold nanospheres with corresponding simulated nanoscale dimers. Geometric features of the nanosphere dimers were related to corresponding optical and near-infrared activity through simulation. Differences in optical and infrared activity of the nanosphere dimers were largely attributable to changes in the radius of the nanosphere and the radius of the conductive junction between merged nanospheres. The features observed in the experimental spectra were attributed to a select number of dimers exhibiting predominantly optical and infrared activity, consistent with observations made in the corresponding transmission electron microscope image. The preparation and simulation methods in the present work appear useful to guide design, fabrication, and implementation of sustainably-synthesized nanosphere dimers with desired optical features for optoelectronic, spectroscopic, and sensing applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"47-56"},"PeriodicalIF":1.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel
{"title":"Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing","authors":"K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/OJNANO.2024.3418840","DOIUrl":"10.1109/OJNANO.2024.3418840","url":null,"abstract":"Globally, a contemporary trend is towards the realization of sustainable, eco-friendly, miniaturized, and cost-effective sensors. This work focuses on developing a plug-and-play device using inexpensive and biodegradable UV resin fed 3D printing stereolithography (SLA) to produce miniaturized microfluidic platforms for electrochemical sensing. The device consists of three compartments designed to accommodate the 3-electrodes according to the need. SLA 3D printing technique solves these restrictions, making sensors reliable, repeatable, and durable. For electrochemical detection at the point of need or as a lab-on-chip (LoC) platform with minimal sample volume, this work attempts to construct a flexible as well as non-flexible microelectrode setup. The analytical capability of the platform is examined by quantifying nanomolar levels of dopamine in human body fluids. Chronoamperometry and cyclic voltammetry on surface-treated graphene-poly lactic acid (g-PLA) microelectrodes modified with gold nanoparticles are carried out utilizing a handheld potentiostat. The designed device has a linear range of 0.1 to 120 nM with limit of detection and limit of quantification of 0.083 and 0.27 nM, respectively. Various electrode characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy are carried out. The developed device is finally tested for real-time analysis on human blood and serum samples.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"30-38"},"PeriodicalIF":1.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudo-Random Number Generators for Stochastic Computing (SC): Design and Analysis","authors":"Pilin Junsangsri;Fabrizio Lombardi","doi":"10.1109/OJNANO.2024.3414955","DOIUrl":"10.1109/OJNANO.2024.3414955","url":null,"abstract":"In most nanoscale stochastic computing designs, the Stochastic Number Generator (SNG) circuit is complex and occupies a significant area because each copy of a stochastic variable requires its own dedicated (and independent) stochastic number generator. This article introduces a novel approach for pseudo-random number generators (RNGs) to be used in SNGs. The proposed RNG design leverages the inherent randomness between each bit of data to generate larger sets of random numbers by concatenating the modules of the customized linear feedback shift registers. To efficiently generate random data, a plane of RNGs (comprising of multiple modules) is introduced. A sliding window approach is employed for reading data in both the horizontal and vertical directions; therefore, the sets of random numbers are generated by doubling the datasets and inverting the duplicated datasets. Flip-Flops are utilized to isolate the datasets and diminish correlation among them. This paper explores variations in parameters to evaluate their impact on the performance of the proposed design. A comparative analysis between the proposed design and existing SNG designs from technical literature is presented. The results show that the proposed nanoscale RNG design offers many advantages such as small area per RNG, low power operation, generated large datasets and higher accuracy.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"57-67"},"PeriodicalIF":1.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Performance Analysis of ISFET Using Various Oxide Materials for Biosensing Applications","authors":"Sankararao Majji;Asisa Kumar Panigrahy;Depuru Shobha Rani;Muralidhar Nayak Bhukya;Chandra Sekhar Dash","doi":"10.1109/OJNANO.2024.3408845","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3408845","url":null,"abstract":"The healthcare industry is constantly changing because of technological breakthroughs that spur new methods of diagnosing and treating illnesses. This study investigates the development of Ion Sensitive Field Effect Transistor (ISFET) sensors for DNA-based blood cancer diagnosis. This work presents the design of a two-dimensional ion-sensitive field-effect transistor. Concentration fluctuations and transfer characteristics with different oxides are studied using blood from two electrolyte solutions. It is possible to evaluate how the modeled device can be utilized as a pH sensor or a biosensor in healthcare applications by looking at how the pH changes for different oxides. Additionally, several oxides were examined in the simulated ISFET devices' output characteristics. Blood is the electrolyte to study the device's sensitivity for different oxides. When pH 7.4 is considered, SiO\u0000<sub>2</sub>\u0000 oxide is significantly more sensitive than other oxides. The resulting 2D-ISFET exhibits remarkable blood electrolyte sensitivity and holds potential as a quick detection tool for blood cancer. The results show that the ISFET possesses drain-induced barrier lowering (DIBL), greater ON-current \u0000<italic>(I<sub>ON</sub></i>\u0000) and switching ratio (\u0000<italic>I<sub>ON</sub>/I<sub>OFF</sub></i>\u0000), and decreased subthreshold swing (SS). The pH sensor's sensitivity and the suggested equipment can detect up to 30 fg/mL of blood cancer biomarkers. An important development in technology-driven healthcare is the emergence of DNA-based blood cancer detection utilizing ISFET sensors. This opens up new avenues for improving cancer diagnosis and patient outcomes.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"23-29"},"PeriodicalIF":1.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547399","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Aslam;Shu-Wei Chang;Min-Hui Chuang;Yi-Ho Chen;Yao-Jen Lee;Yiming Li
{"title":"Temperature-Dependent Hydrogen Modulations of Ultra-Scaled a-IGZO Thin Film Transistor Under Gate Bias Stress","authors":"Muhammad Aslam;Shu-Wei Chang;Min-Hui Chuang;Yi-Ho Chen;Yao-Jen Lee;Yiming Li","doi":"10.1109/OJNANO.2024.3386123","DOIUrl":"10.1109/OJNANO.2024.3386123","url":null,"abstract":"Recently, a-IGZO has advanced toward the next-generation electronics system because of its compatibility with complementary metal oxide semiconductor (CMOS) and back-end-of-line (BOEL) based systems. A systematic electrical characterization of a-IGZO TFT related to reliability issues, such as positive bias temperature stress (PBTS) and negative bias temperature stress (NBTS), would entitle its integration into novel electronics systems. Unexpectedly, PBTS is characterized by the transition of positive V\u0000<sub>th</sub>\u0000 shift to negative V\u0000<sub>th</sub>\u0000 shift (ΔV\u0000<sub>th</sub>\u0000, the positive shift followed by the stress and temperature activated negative shift). This transition is attributed to charge trapping/trap-site generations and hydrogen migration to the active layer. The ΔV\u0000<sub>th</sub>\u0000 shift mechanism depends on the temperature and voltage stress. On the other hand, a negative ΔV\u0000<sub>th</sub>\u0000 shift has been observed during the NBTS operation and could be attributed to the hole trapping at the interface of GI/IGZO. An effective suppression of the gate leakage current has also been observed during reliability tests. Simulation results reveal a pronounced potential at the edges of source and drain regions, and considered the origin of hydrogen migration into the IGZO layer. Thermal image results also reveal the strong temperature/potential distribution at the edges of the source/drain regions, indorsing the simulation results.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"9-16"},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494359","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and Design of FeFET Synapse With Stacked-Nanosheet Architecture Considering Cycle-to-Cycle Variations for Neuromorphic Applications","authors":"Heng Li Lin;Pin Su","doi":"10.1109/OJNANO.2024.3399559","DOIUrl":"10.1109/OJNANO.2024.3399559","url":null,"abstract":"Using extensive Monte-Carlo simulations with a nucleation-limited-switching (NLS) ferroelectric model and considering cycle-to-cycle variations, this paper constructs and analyzes the intrinsic conductance (G\u0000<sub>DS</sub>\u0000) response of stacked-nanosheet FeFET synapses with emphasis on the challenging identical-pulse stimulation. Our study indicates that the interlayer oxide thickness of the FeFET and the saturation polarization of the ferroelectric are crucial to the linearity and symmetry of the intrinsic G\u0000<sub>DS</sub>\u0000 response. With the stacked-nanosheet architecture, the maximum-to-minimum conductance ratio in the G\u0000<sub>DS</sub>\u0000 response can be boosted by increasing the number of channel tiers without footprint penalty. For a stacked-nanosheet FeFET synapse with an area ratio effect, the G\u0000<sub>DS</sub>\u0000 response can be further engineered by varying the tier number. In addition, the immunity to cycle-to-cycle variations and the noise margin for each state in the G\u0000<sub>DS</sub>\u0000 response can also be improved by increasing the number of tiers. Our study may provide insights for future FeFET synapse design for analog computing.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"17-22"},"PeriodicalIF":1.7,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Open Journal of Nanotechnology Information for Authors","authors":"","doi":"10.1109/OJNANO.2024.3362551","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3362551","url":null,"abstract":"","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"C3-C3"},"PeriodicalIF":1.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10461135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of GAA Junction Less NS FET Towards Analog and RF Applications at 30 nm Regime","authors":"Asisa Kumar Panigrahy;Sudheer Hanumanthakari;Shridhar B. Devamane;Shruti Bhargava Choubey;M. Prasad;D. Somasundaram;N. Kumareshan;N. Arun Vignesh;Gnanasaravanan Subramaniam;Durga Prakash M;Raghunandan Swain","doi":"10.1109/OJNANO.2024.3365173","DOIUrl":"10.1109/OJNANO.2024.3365173","url":null,"abstract":"This research focuses on a quantum model created using an entirely novel nanosheet FET. The standard model describes the performance of a Gate-all-around (GAA) Junction-less (JL) nanosheet device with a gate dielectric of SiO\u0000<sub>2</sub>\u0000 and HfO\u0000<sub>2</sub>\u0000, each having a thickness of 1 nm. The performance of both the classical and quantum models of the GAA nanosheet device is evaluated using the visual TCAD tool, which measures the \u0000<italic>I<sub>ON</sub></i>\u0000, \u0000<italic>I<sub>OFF</sub></i>\u0000, \u0000<italic>I<sub>ON</sub>/ I<sub>OFF</sub></i>\u0000, threshold voltage, DIBL, gain parameters (g\u0000<sub>m</sub>\u0000, g\u0000<sub>d</sub>\u0000, A\u0000<sub>v</sub>\u0000), gate capacitance, and cut-off frequency (\u0000<italic>f<sub>T</sub></i>\u0000). The device is suited for applications needing rapid switching since it has a low gate capacitance of the order of 10\u0000<sup>–18</sup>\u0000, according to the simulation results. A transconductance (g\u0000<sub>m</sub>\u0000) value of 21 µS and an impressive cut-off frequency of 9.03 GHz are displayed during device analysis. A detailed investigation has also been done into the P-type device response for the same device. Finally, the proposed GAA nanosheet device is used in the inverter model. The NSFET-based inverter, although having higher gate capacitance, has the shortest propagation latency.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"1-8"},"PeriodicalIF":1.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433722","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical Characteristic and Power Fluctuations of GAA Si NS CFETs by Simultaneously Considering Six Process Variation Factors","authors":"Sekhar Reddy Kola;Yiming Li","doi":"10.1109/OJNANO.2023.3335942","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3335942","url":null,"abstract":"Characteristic variability induced by process variation effect (PVE) is one of technological challenges in semiconductor industry. In this work, we computationally study electrical characteristic and power fluctuations induced by six factors of PVE of the gate-all-around (GAA) silicon (Si) nanosheet (NS) complementary field-effect-transistors (CFETs) which are formed by vertically stacking \u0000<italic>n</i>\u0000-FET on top of \u0000<italic>p</i>\u0000-FET. Among the six factors, NS thickness (\u0000<italic>T<sub>NS</sub></i>\u0000), NS width (\u0000<italic>W<sub>NS</sub></i>\u0000), and gate length (\u0000<italic>L<sub>G</sub></i>\u0000) are identified as crucial factors contributing to large variations in device characteristics. The \u0000<italic>p</i>\u0000-FET exhibits substantial off-state current fluctuation (about 151%) due to the bottom parasitic channel leakages. Compared with the magnitudes of dynamic and short circuit powers, the static power is marginal, but it possesses the largest fluctuation (up to 148%). If we assume that each factor of PVE has the same probability distribution as the others and all are mutually independent, the statistical sum of their power fluctuations will exhibit more than 50% overestimations, compared with the results when all factors are considered simultaneously.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"229-238"},"PeriodicalIF":1.7,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10330087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder
{"title":"Impact of Specific PM2.5 Contaminant on Monolayer/Bilayer ArGNR","authors":"Kamal Solanki;Swati Verma;Punya Prasanna Paltani;Manoj Kumar Majumder","doi":"10.1109/OJNANO.2023.3336366","DOIUrl":"https://doi.org/10.1109/OJNANO.2023.3336366","url":null,"abstract":"Elevated Particular Matter (PM\u0000<sub>2.5</sub>\u0000) may increase the risk of acquiring hazardous health implications, and hence high-performance monitoring of minuscule contaminants might protect people's health. The adsorption behaviour of specific PM\u0000<sub>2.5</sub>\u0000 contaminants on doped/undoped monolayer/bilayer armchair graphene nanoribbon (ArGNR) is analyzed using a hydrogen-passivated layer. By using the first-principles density functional theory (DFT), the influence of doping on the ArGNR substrate is carefully examined. Due to the fragile surface atoms, monolayer ArGNR exhibits roughly twice the adsorption energy compared to the bilayer configuration. However, the specific PM\u0000<sub>2.5</sub>\u0000 contaminants, the CH\u0000<sub>4</sub>\u0000, NH\u0000<sub>3</sub>\u0000, and NO\u0000<sub>2</sub>\u0000 molecules demonstrate chemisorption of −2 eV,−2.95 eV, and −4 eV, with extremely less bandgap variation of −65% to −70% and −100% and a gigantic amount of charge transfer of +0.153 eV, +0.156 eV and +0.010 eV, and the DOS peaks at B site are \u0000<inline-formula><tex-math>$ pm 110,text{eV}, pm 65{rm{ eV}}, pm 80{rm{ eV}}$</tex-math></inline-formula>\u0000, and at the P site are \u0000<inline-formula><tex-math>$ pm 130$</tex-math></inline-formula>\u0000 eV, \u0000<inline-formula><tex-math>$ pm 300$</tex-math></inline-formula>\u0000 eV and \u0000<inline-formula><tex-math>$ pm 80$</tex-math></inline-formula>\u0000 eV on boron-phosphorus (BP) co-doped monolayer ArGNR, for CH\u0000<sub>4</sub>\u0000, NH\u0000<sub>3,</sub>\u0000 and NO\u0000<sub>2</sub>\u0000, respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"4 ","pages":"215-228"},"PeriodicalIF":1.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328676","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}