压电纳米材料中的极化和应变:推进生物医学技术中的传感应用

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anmol Garg;Sajal Agarwal;Deepak Punetha
{"title":"压电纳米材料中的极化和应变:推进生物医学技术中的传感应用","authors":"Anmol Garg;Sajal Agarwal;Deepak Punetha","doi":"10.1109/OJNANO.2024.3488787","DOIUrl":null,"url":null,"abstract":"This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO\n<sub>3</sub>\n, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO\n<sub>3</sub>\n exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m\n<sup>2</sup>\n at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"89-97"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739969","citationCount":"0","resultStr":"{\"title\":\"Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology\",\"authors\":\"Anmol Garg;Sajal Agarwal;Deepak Punetha\",\"doi\":\"10.1109/OJNANO.2024.3488787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO\\n<sub>3</sub>\\n, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO\\n<sub>3</sub>\\n exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m\\n<sup>2</sup>\\n at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"5 \",\"pages\":\"89-97\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739969\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10739969/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10739969/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了通过基于 MEMS 的压电致动器模型对不同压电材料进行的比较分析,强调了它们在传感应用方面的潜力。本文广泛研究了不同压电材料(如 PZT、LiNbO3、PVDF 等)的极化和电致应变张量能力。在不同电压和机械应力下获得的模拟结果表明,LiNbO3 在测试材料中表现出更优越的性能,在 800 伏特电压下的极化值为 0.5163 C/m2,在施加 25 兆帕机械应力时的电致伸缩应变张量为 0.01。这些发现将有助于科学家为生物医学领域的传感应用选择最合适的压电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology
This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO 3 , PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO 3 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m 2 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信