Trends in Biochemical Sciences最新文献

筛选
英文 中文
Constructive neutral evolution of homodimer to heterodimer transition. 同源二聚体向异源二聚体过渡的建设性中性进化。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-23 DOI: 10.1016/j.tibs.2024.10.003
Lin Chou, Carly J Houghton, Aaron Wacholder, Anne-Ruxandra Carvunis
{"title":"Constructive neutral evolution of homodimer to heterodimer transition.","authors":"Lin Chou, Carly J Houghton, Aaron Wacholder, Anne-Ruxandra Carvunis","doi":"10.1016/j.tibs.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.10.003","url":null,"abstract":"<p><p>Complexification of macrobiomolecules, such as homodimer to heterodimer transitions, are common during evolution. Is such complexification always adaptive? Using large-scale experiments and in-depth biochemical analyses, Després et al. recently demonstrated that an obligate heterodimer can evolve from a homodimer through neutral, nonadaptive events, and quantified key parameters required for such transitions.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized DNA secondary structures and nanostructures for specific protein modifications. 用于特定蛋白质修饰的功能化 DNA 二级结构和纳米结构。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-22 DOI: 10.1016/j.tibs.2024.09.003
Bauke Albada
{"title":"Functionalized DNA secondary structures and nanostructures for specific protein modifications.","authors":"Bauke Albada","doi":"10.1016/j.tibs.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.003","url":null,"abstract":"<p><p>The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clues into Wnt cell surface signalosomes and its biogenesis. Wnt 细胞表面信号体及其生物生成的线索。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-22 DOI: 10.1016/j.tibs.2024.09.007
Philip Schmiege, Xiaochun Li
{"title":"Clues into Wnt cell surface signalosomes and its biogenesis.","authors":"Philip Schmiege, Xiaochun Li","doi":"10.1016/j.tibs.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.007","url":null,"abstract":"<p><p>Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anything you can do, glycans do better: deglycosylation and noncanonical ubiquitination vie to rule the proteasome. 你能做的任何事情,聚糖都能做得更好:脱糖基化和非经典泛素化争夺蛋白酶体的统治权。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-16 DOI: 10.1016/j.tibs.2024.10.001
Nicolas Lehrbach
{"title":"Anything you can do, glycans do better: deglycosylation and noncanonical ubiquitination vie to rule the proteasome.","authors":"Nicolas Lehrbach","doi":"10.1016/j.tibs.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.10.001","url":null,"abstract":"<p><p>The Nrf1/Nfe2L1 transcription factor is a master regulator of proteasome biogenesis. New work by Yoshida and colleagues reveals a surprising mechanism by which ubiquitination of N-glycosylated Nrf1 controls its function.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of hydrolysis in perceiving and degrading the plant hormone strigolactones. 水解作用在感知和降解植物激素绞股蓝内酯中的作用。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-08 DOI: 10.1016/j.tibs.2024.09.006
Kawthar F Alashoor, Jian You Wang, Salim Al-Babili
{"title":"The role of hydrolysis in perceiving and degrading the plant hormone strigolactones.","authors":"Kawthar F Alashoor, Jian You Wang, Salim Al-Babili","doi":"10.1016/j.tibs.2024.09.006","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.006","url":null,"abstract":"<p><p>Strigolactones (SLs) perform versatile functions in plants. The different members of the α/β-hydrolase superfamily bind and hydrolyze SLs at varying rates to transduce their signal or maintain SL homeostasis. Recent work by Palayam et al. on SL-degrading carboxylesterases (CXEs) uncovers structural elements that determine the mechanism, efficiency of SL hydrolysis, and biological functions.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography 通过低温电子断层扫描观察病毒膜融合的中间阶段。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.06.012
{"title":"Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography","authors":"","doi":"10.1016/j.tibs.2024.06.012","DOIUrl":"10.1016/j.tibs.2024.06.012","url":null,"abstract":"<div><div>Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates 揭示细胞内的相分离:生物分子凝聚物光学成像的进展。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.06.014
{"title":"Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates","authors":"","doi":"10.1016/j.tibs.2024.06.014","DOIUrl":"10.1016/j.tibs.2024.06.014","url":null,"abstract":"<div><div>Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI: 10.1016/S0968-0004(24)00212-3
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(24)00212-3","DOIUrl":"10.1016/S0968-0004(24)00212-3","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytosine methylation flags mitochondrial RNA for degradation 胞嘧啶甲基化标志着线粒体 RNA 的降解。
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.08.001
{"title":"Cytosine methylation flags mitochondrial RNA for degradation","authors":"","doi":"10.1016/j.tibs.2024.08.001","DOIUrl":"10.1016/j.tibs.2024.08.001","url":null,"abstract":"<div><div>Mitochondrial double-stranded RNA (dsRNA) can form spontaneously in mitochondria, blocking mitochondrial gene expression and triggering an immune response. A recent study by <span><span>Kim, Tan, <em>et al</em>.</span><svg><path></path></svg></span> identified a safeguard mechanism in which NOP2/Sun RNA methyltransferase 4 (NSUN4)-mediated RNA methylation (m<sup>5</sup>C) recruits the RNA degradation machinery to prevent dsRNA formation.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 11.6 1区 生物学
Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI: 10.1016/S0968-0004(24)00215-9
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(24)00215-9","DOIUrl":"10.1016/S0968-0004(24)00215-9","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":null,"pages":null},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信