Solid State Ionics最新文献

筛选
英文 中文
Composite anion exchange membranes based on poly(biphenyl piperidinium) / ZrO2 聚联苯哌啶/ ZrO2复合阴离子交换膜
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-22 DOI: 10.1016/j.ssi.2025.116996
Alessandro Raffaele Ferrari, Diego Stucchi, Tommaso Caielli, Raziyeh Akbari, Ivan Claudio Pellini, Carlo Antonini, Piercarlo Mustarelli
{"title":"Composite anion exchange membranes based on poly(biphenyl piperidinium) / ZrO2","authors":"Alessandro Raffaele Ferrari,&nbsp;Diego Stucchi,&nbsp;Tommaso Caielli,&nbsp;Raziyeh Akbari,&nbsp;Ivan Claudio Pellini,&nbsp;Carlo Antonini,&nbsp;Piercarlo Mustarelli","doi":"10.1016/j.ssi.2025.116996","DOIUrl":"10.1016/j.ssi.2025.116996","url":null,"abstract":"<div><div>The main requirement for the development of Anion Exchange Membranes Fuel Cells (AEMFCs) and Water Electrolyzers (AEMFEs) on an industrial scale is the improvement of Anion Exchange Membranes performance. Besides good ionic conductivity, dimensional stability and mechanical properties in the wet state, the main challenge to be overcome is the improvement of AEMs chemical resistance in harsh alkaline environment. Poly(aryl piperidinium)s are among the most promising AEMs in terms of conductivity, mechanical properties, and chemical stability. Here we report the fabrication and physico-chemical characterization of composite AEMs based on poly(biphenyl piperidinium) (PBP) with the addition of zirconium oxide as a filler to improve membrane properties, including anionic conductivity, water uptake and alkali resistance. The optimal ZrO<sub>2</sub> filler content was found to be 5 wt% of dry polymer mass. Compared to plain PBP, composite membranes exhibit increased hydroxide conductivity (from 75 to 116 mS cm<sup>−1</sup> at 80 °C), reduced water uptake (from 427 % to 278 % at 80 °C) and swelling ratio (from 85 to 62 % at 80 °C), and a limited reduction (41 %) of cationic groups after ageing in KOH 1 M for 500 h at 80 °C. We demonstrate that ZrO<sub>2</sub> filler hinders Hoffman elimination reaction on the piperidinium ring.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 116996"},"PeriodicalIF":3.3,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144890524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient-state methods to determine all the mass/charge transport properties of a material 瞬态方法,以确定所有的质量/电荷传输性质的材料
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-22 DOI: 10.1016/j.ssi.2025.116998
Han-Ill Yoo
{"title":"Transient-state methods to determine all the mass/charge transport properties of a material","authors":"Han-Ill Yoo","doi":"10.1016/j.ssi.2025.116998","DOIUrl":"10.1016/j.ssi.2025.116998","url":null,"abstract":"<div><div>All the mass/charge transport properties of a material with, e.g., single-type ions (i) and electrons (e) as mobile charged components may be documented exhaustively and succinctly in terms of a coupling coefficient matrix L of the Onsagerian causality as</div><div><span><math><mfenced><mtable><mtr><mtd><msub><mi>J</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><msub><mi>J</mi><mi>e</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>ii</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ie</mi></msub></mtd><mtd><msub><mi>L</mi><mi>iT</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>ei</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ee</mi></msub></mtd><mtd><msub><mi>L</mi><mi>eT</mi></msub></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mo>−</mo><mo>∇</mo><msub><mi>η</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mo>−</mo><mo>∇</mo><msub><mi>η</mi><mi>e</mi></msub></mtd></mtr><mtr><mtd><mo>−</mo><mo>∇</mo><mi>T</mi></mtd></mtr></mtable></mfenced></math></span>,</div><div>where J<sub>k</sub> and η<sub>k</sub> stand for the flux and electrochemical potential, respectively, of the mobile charged-component k(=i,e), and T the absolute temperature. Due to the Onsager reciprocity and the L-matrix transformation rule,</div><div><span><math><msub><mi>L</mi><mi>ie</mi></msub><mo>=</mo><msub><mi>L</mi><mi>ei</mi></msub><mo>;</mo><mspace></mspace><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>iT</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>eT</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>ii</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ie</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>ei</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ee</mi></msub></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>i</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>e</mi></msub></mtd></mtr></mtable></mfenced></math></span>,</div><div>where <span><math><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>k</mi></msub></math></span>is the transported entropy of k, the sum of its partial entropy, <span><math><msub><mover><mi>S</mi><mo>̄</mo></mover><mi>k</mi></msub><mspace></mspace></math></span>and entropy-of-transport, <span><math><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup></math></span> or<span><span><span><math><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>k</mi></msub><mo>≡</mo><msub><mover><mi>S</mi><mo>̄</mo></mover><mi>k</mi></msub><mo>+</mo><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup><mo>;</mo><mspace></mspace><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup><mo>≡</mo><mfrac><msubsup><mi>q</mi><mi>k</mi><mo>∗</mo></msubsup><mi>T</mi></mfrac></math></span></span></span></div><div>with <span><math><msubsup><mi>q</mi><mi>k</mi><mo>∗</mo></msubsup></math></span> being the reduced heat-of-","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 116998"},"PeriodicalIF":3.3,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144890523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy-electrode based on micron-sized LiNi0.5Mn0.3Co0.2O2/LiFePO4 particles with bimodal size distribution 基于微米级双峰尺寸分布的LiNi0.5Mn0.3Co0.2O2/LiFePO4粒子的协同电极
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-21 DOI: 10.1016/j.ssi.2025.117000
Oncu Akyildiz , Ezgi Yılmaz
{"title":"Synergy-electrode based on micron-sized LiNi0.5Mn0.3Co0.2O2/LiFePO4 particles with bimodal size distribution","authors":"Oncu Akyildiz ,&nbsp;Ezgi Yılmaz","doi":"10.1016/j.ssi.2025.117000","DOIUrl":"10.1016/j.ssi.2025.117000","url":null,"abstract":"<div><div>We investigated the electrochemical behavior of binary blend cathodes made by mixing micro-spheres of LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub> and smaller micro-platelets of LiFePO<sub>4</sub> in different proportions (10–40 wt%). Results show that the discharge profiles of the blended electrodes at 0.1C are predictable through a model based on the weighted averages of specific differential capacities of pristine electrodes. However, at high C-rates (&gt;1C), the blended electrode contains 20 wt% LiFePO<sub>4</sub> (coined as the synergy-electrode) shows significantly higher discharge capacity and better capacity retention (observed up to the 100th cycle) than other electrodes. The synergy is rationalized using cyclic voltammetry and electrochemical impedance spectroscopy, indicating the facilitation of the charge-discharge reactions, reduction of both the bulk and the charge-transfer resistances, and higher Li diffusion coefficients observed for the synergy-electrode.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 117000"},"PeriodicalIF":3.3,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144885429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Sodium hydrosulfide hydrate as sodium precursor for low-cost synthesis of Na3SbS4 ionic conductor” [Solid State Ionics 427 (2025) 116892] “氢硫化钠水合物作为低成本合成Na3SbS4离子导体的钠前体”[固态离子学]427(2025)116892的勘误表
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-21 DOI: 10.1016/j.ssi.2025.116992
Pierre Gibot , Christine Surcin , Jean Noel Chotard
{"title":"Corrigendum to “Sodium hydrosulfide hydrate as sodium precursor for low-cost synthesis of Na3SbS4 ionic conductor” [Solid State Ionics 427 (2025) 116892]","authors":"Pierre Gibot ,&nbsp;Christine Surcin ,&nbsp;Jean Noel Chotard","doi":"10.1016/j.ssi.2025.116992","DOIUrl":"10.1016/j.ssi.2025.116992","url":null,"abstract":"","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 116992"},"PeriodicalIF":3.3,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144885430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithium ion conducting NaSICON materials: Migration mechanisms and energies 锂离子导电NaSICON材料:迁移机制和能量
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-11 DOI: 10.1016/j.ssi.2025.116951
Judith Schuett, Steffen Neitzel-Grieshammer
{"title":"Lithium ion conducting NaSICON materials: Migration mechanisms and energies","authors":"Judith Schuett,&nbsp;Steffen Neitzel-Grieshammer","doi":"10.1016/j.ssi.2025.116951","DOIUrl":"10.1016/j.ssi.2025.116951","url":null,"abstract":"<div><div>Sodium superionic conductors (NaSICONs) have garnered significant attention as promising solid electrolytes for all-solid-state batteries, owing to their high ionic conductivity at room temperature. The ionic motion in these materials at the atomistic scale can be investigated by computational approaches such as Density Functional Theory (DFT) to gain deeper insights into their transport properties. In this work, we present a comprehensive review of DFT-based studies, focusing on site occupancies and transport mechanisms that govern the Li<sup>+</sup> conduction in NaSICONs. The reported site and migration energies show significant variations, primarily attributed to differences in the size of the calculated supercells. Despite these discrepancies, our analysis confirms that both vacancy-assisted and interstitial migration occur in the NaSICON structure, with the latter being crucial for enabling superionic conduction. Therefore, a comprehensive understanding of the Li<sup>+</sup> migration in NaSICONs requires consideration of both mechanisms as well as the various migration pathways involved.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116951"},"PeriodicalIF":3.3,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144809493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect chemistry, ionic and electronic conductivity of an Fe/Ni-substituted La0.49Sr0.31TiO3 exsolution material Fe/ ni取代La0.49Sr0.31TiO3外溶材料的缺陷化学、离子电导率和电子电导率
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-05 DOI: 10.1016/j.ssi.2025.116917
Shu Wang, Jing-Jing Shen, Peter Vang Hendriksen, Bhaskar Reddy Sudireddy
{"title":"Defect chemistry, ionic and electronic conductivity of an Fe/Ni-substituted La0.49Sr0.31TiO3 exsolution material","authors":"Shu Wang,&nbsp;Jing-Jing Shen,&nbsp;Peter Vang Hendriksen,&nbsp;Bhaskar Reddy Sudireddy","doi":"10.1016/j.ssi.2025.116917","DOIUrl":"10.1016/j.ssi.2025.116917","url":null,"abstract":"<div><div>Solid oxide cells offer unrivalled efficiency in energy conversion and can become a key technology for the green transition of the energy system. The state-of-the-art fuel electrode of such cells, a Ni-zirconia composite, suffers from some limitations: poor durability at high polarization, sensitivity to detrimental coke formation, and limited redox stability. Electrodes made from perovskite materials may offer a solution to these challenges; they show a reduced tendency for coke formation and have the potential to enhance stability and performance. To this end, developing perovskite materials with enhanced mixed ionic and electronic conductivity (MIEC) and the capacity to exsolve nanoparticles to boost performance is important. This study introduces a defect chemistry model for a promising “exsolution” material (La<sub>0.49</sub>Sr<sub>0.31</sub>Ti<sub>0.94</sub>Fe<sub>0.03</sub>Ni<sub>0.03</sub>O<sub>3,</sub> LSFNT) and reports on the transport properties of the material. LSFNT retains a stable cubic perovskite structure across a wide oxygen partial pressure range (0.21 to 10<sup>−21</sup> bar) and ex-solves Ni<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub> nanoparticles in pure hydrogen. The conductivity of LSFNT increases with decreasing oxygen partial pressure, displaying an approximate <span><math><msup><msub><mi>pO</mi><mn>2</mn></msub><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span> dependence in the range of 10<sup>−14</sup> to 10<sup>−18</sup> bar. Below this threshold, the <span><math><msub><mi>pO</mi><mn>2</mn></msub></math></span> dependence of the conductivity deviates from this trend due to oxygen vacancy annihilation and Fe/Ni nanoparticle exsolution, consistent with the proposed defect chemistry model. This work also demonstrates the mixed ionic and electronic conductivity in LSFNT. Electron-blocking experiments reveal a high ionic conductivity of LSFNT (0.054 S/cm at 850 °C), which exceeds that of yttria-stabilized zirconia (8YSZ) and is comparable to gadolinium-doped ceria (Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>2</sub>, CGO). Overall, these findings underscore the good stability of LSFNT alongside noteworthy electronic and ionic conductivity, rendering it a strong candidate as a fuel electrode backbone material for solid oxide cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116917"},"PeriodicalIF":3.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144771403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the effect of atomic and morphological arrangements in the pseudocapacitive properties of TT-Nb2O5 nanostructures 探讨了TT-Nb2O5纳米结构中原子和形态排列对赝电容性能的影响
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-05 DOI: 10.1016/j.ssi.2025.116990
Andrea Zambotti , Gugulethu Charmaine Nkala , Supriti Dutta , Sree Harsha Bhimineni , Nicolas Leport , Aimeric Laperruque , Johanna Nelson Weker , Philippe Sautet , Laurent Pilon , Bruce Dunn
{"title":"Probing the effect of atomic and morphological arrangements in the pseudocapacitive properties of TT-Nb2O5 nanostructures","authors":"Andrea Zambotti ,&nbsp;Gugulethu Charmaine Nkala ,&nbsp;Supriti Dutta ,&nbsp;Sree Harsha Bhimineni ,&nbsp;Nicolas Leport ,&nbsp;Aimeric Laperruque ,&nbsp;Johanna Nelson Weker ,&nbsp;Philippe Sautet ,&nbsp;Laurent Pilon ,&nbsp;Bruce Dunn","doi":"10.1016/j.ssi.2025.116990","DOIUrl":"10.1016/j.ssi.2025.116990","url":null,"abstract":"<div><div>In this study, we determine the role of oxygen vacancies and preferred surface orientation on the charge storage properties of the lithium intercalation host, pseudohexagonal <em>TT-</em>Nb<sub>2</sub>O<sub>5</sub>. Two different morphologies were synthesized, namely nanosheets and nanowires. We employed a set of advanced characterization techniques including entropic potential measurements, high-resolution synchrotron X-ray diffraction and synchrotron X-ray absorption spectroscopy together with electrochemical measurements and density functional theory calculations. Our results indicate that the two morphologies exhibit different oxygen vacancy characteristics as nanosheets have oxygen vacancies limited to the surface while nanowires possess vacancies which tend to be located in the bulk solid. Oxygen vacancies in the bulk of <em>TT-</em>Nb<sub>2</sub>O<sub>5</sub> lead to an appreciable increase in specific capacity compared to nanosheets where oxygen vacancies confined to specific crystallographic surfaces do not make a significant contribution to the electrochemical response of the <em>TT-</em>Nb<sub>2</sub>O<sub>5</sub> anodes. These results show how the distribution and concentration of oxygen vacancies play a major role in the lithiation mechanisms of <em>TT-</em>Nb<sub>2</sub>O<sub>5</sub>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116990"},"PeriodicalIF":3.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144771404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Y and Pr co-doped CeO2 electrolytes for intermediate-temperature solid oxide fuel cells 中温固体氧化物燃料电池用Y和Pr共掺杂CeO2电解质的优化
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-05 DOI: 10.1016/j.ssi.2025.116993
Fei Han, Bi Xu, Qinan Zhou, Yuanyuan Wang, Hongxue Li, Haochen Shi
{"title":"Optimizing Y and Pr co-doped CeO2 electrolytes for intermediate-temperature solid oxide fuel cells","authors":"Fei Han,&nbsp;Bi Xu,&nbsp;Qinan Zhou,&nbsp;Yuanyuan Wang,&nbsp;Hongxue Li,&nbsp;Haochen Shi","doi":"10.1016/j.ssi.2025.116993","DOIUrl":"10.1016/j.ssi.2025.116993","url":null,"abstract":"<div><div>The ceria-based electrolytes with high ionic conductivity are promising for SOFCs, garnering extensive research interest. This study examines Y and Pr co-doped Ce<sub>1-x</sub>Y<sub>x/2</sub>Pr<sub>x/2</sub>O<sub>2-δ</sub> (x = 0–0.30) electrolytes for IT-SOFCs. The synthesized compositions are characterized to assess their functional properties. All samples formed cubic fluorite structures at 600 °C. YPDC20 shows the highest relative density (94.8 %) and, the smallest grain size, highest dislocation density, and largest micro strain. X-ray photoelectron spectroscopy (XPS) reveals the mixed valence states of cerium (Ce<sup>4+</sup>/Ce<sup>3+</sup>) in both CeO<sub>2</sub> and YPDC20, along with coexisting Pr<sup>3+</sup>/Pr<sup>4+</sup> states in YPDC20. Electrochemical impedance spectroscopy combined with capacitance calculations confirms significant differences in the contributions of grain, grain boundary, and electrode components. The study reveals that for YPDC05, the characteristic grain boundary resistance arc shifts to higher frequencies with increasing temperature, with only electrode response observed at 800 °C. As doping concentration increases, the disappearance temperature of grain boundary response significantly decreases: YPDC10 exhibits only electrode contribution at 700 °C, while higher-doped samples (x &gt; 0.10) reached this state at 600 °C. Notably, YPDC20 demonstrates optimal performance, achieving an ionic conductivity of 1.2 × 10<sup>−1</sup> S cm<sup>−1</sup> at 800 °C—nearly two orders of magnitude higher than undoped CeO₂. This performance enhancement primarily stems from the dual effects of Y/Pr co-doping: the introduction of cations (Y<sup>3+</sup>/Pr<sup>3+/4+</sup>) significantly increases oxygen vacancy concentration, while the optimized microstructure provides fast transport channels for oxygen ions. These characteristics make YPDC20 a highly promising electrolyte material for IT-SOFCs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116993"},"PeriodicalIF":3.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144771402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From setup to analysis: A compact guide to performing Molecular Dynamics simulations of ion transport in solids 从设置到分析:一个紧凑的指南,执行分子动力学模拟离子传输在固体
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-04 DOI: 10.1016/j.ssi.2025.116967
Alexander Bonkowski, Roger A. De Souza
{"title":"From setup to analysis: A compact guide to performing Molecular Dynamics simulations of ion transport in solids","authors":"Alexander Bonkowski,&nbsp;Roger A. De Souza","doi":"10.1016/j.ssi.2025.116967","DOIUrl":"10.1016/j.ssi.2025.116967","url":null,"abstract":"<div><div>The study of ion transport in solid-state materials increasingly utilises Molecular Dynamics (MD) simulations in order to interpret experimental data, reveal mechanistic information, and predict the properties of new systems. In this paper, we consider a variety of issues that may produce incorrect results in MD simulations, and thus may lead to unsound conclusions being drawn. Specifically, we discuss how to prepare, perform and analyse MD simulations of ion transport, highlighting some of the most common pitfalls in MD simulations and how to avoid them. In this way, we arrive at selected guidelines that promote the acquisition of reliable ion transport data from MD simulations.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116967"},"PeriodicalIF":3.3,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144766536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of domain wall current in MgO-doped lithium niobate single crystals up to 400 °C mgo掺杂铌酸锂单晶高达400°C的畴壁电流演示
IF 3.3 4区 材料科学
Solid State Ionics Pub Date : 2025-08-02 DOI: 10.1016/j.ssi.2025.116949
Hendrik Wulfmeier , Uliana Yakhnevych , Cornelius Boekhoff , Allan Diima , Marlo Kunzner , Leonard M. Verhoff , Jonas Paul , Julius Ratzenberger , Elke Beyreuther , Joshua Gössel , Iuliia Kiseleva , Michael Rüsing , Simone Sanna , Lukas M. Eng , Holger Fritze
{"title":"Demonstration of domain wall current in MgO-doped lithium niobate single crystals up to 400 °C","authors":"Hendrik Wulfmeier ,&nbsp;Uliana Yakhnevych ,&nbsp;Cornelius Boekhoff ,&nbsp;Allan Diima ,&nbsp;Marlo Kunzner ,&nbsp;Leonard M. Verhoff ,&nbsp;Jonas Paul ,&nbsp;Julius Ratzenberger ,&nbsp;Elke Beyreuther ,&nbsp;Joshua Gössel ,&nbsp;Iuliia Kiseleva ,&nbsp;Michael Rüsing ,&nbsp;Simone Sanna ,&nbsp;Lukas M. Eng ,&nbsp;Holger Fritze","doi":"10.1016/j.ssi.2025.116949","DOIUrl":"10.1016/j.ssi.2025.116949","url":null,"abstract":"<div><div>Conductive ferroelectric domain walls (DWs) represent a promising topical system for the development of nanoelectronic components and device sensors to be operational at elevated temperatures. DWs show very different properties as compared to their hosting bulk crystal, in particular with respect to the high local electrical conductivity. The objective of this work is to demonstrate DW conductivity up to temperatures as high as 400<!--> <!-->°C which extends previous studies significantly. Experimental investigation of the DW conductivity of charged, inclined DWs is performed using 5<!--> <!-->mol<!--> <!-->% MgO-doped lithium niobate single crystals. Current–voltage (<span><math><mrow><mi>I</mi><mi>V</mi></mrow></math></span> <!--> <!-->) curves are determined by DC electrometer measurements and impedance spectroscopy and found to be identical. Moreover, impedance spectroscopy enables to recognize artifacts such as damaged electrodes. Temperature dependent measurements over repeated heating cycles reveal two distinct thermal activation energies for a given DW, with the higher of the activation energies only measured at higher temperatures. Depending on the specific sample, the higher activation energy is found above 160<!--> <!-->°C to 230<!--> <!-->°C. This suggests, in turn, that more than one type of defect/polaron is involved, and that the dominant transport mechanism changes with increasing temperature. First principles atomistic modeling suggests that the conductivity of inclined domain walls cannot be solely explained by the formation of a 2D carrier gas and must be supported by hopping processes. This holds true even at temperatures as high as 400<!--> <!-->°C. Our investigations underline the potential to extend DW current based nanoelectronic and sensor applications even into the so-far unexplored temperature range up to 400<!--> <!-->°C.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116949"},"PeriodicalIF":3.3,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144758108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信