Solid State Ionics最新文献

筛选
英文 中文
Trade-off between lithium diffusivity and transference in solid ternary polymer ionic liquid electrolytes 锂在固体三元聚合物离子液体电解质中的扩散和转移之间的权衡
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-04-06 DOI: 10.1016/j.ssi.2025.116854
Mark Weijers , Pranav Karanth , Gerrit Homann , Boaz Izelaar , Aleksandra Kondakova , Swapna Ganapathy , Ruud Kortlever , Corsin Battaglia , Fokko M. Mulder
{"title":"Trade-off between lithium diffusivity and transference in solid ternary polymer ionic liquid electrolytes","authors":"Mark Weijers ,&nbsp;Pranav Karanth ,&nbsp;Gerrit Homann ,&nbsp;Boaz Izelaar ,&nbsp;Aleksandra Kondakova ,&nbsp;Swapna Ganapathy ,&nbsp;Ruud Kortlever ,&nbsp;Corsin Battaglia ,&nbsp;Fokko M. Mulder","doi":"10.1016/j.ssi.2025.116854","DOIUrl":"10.1016/j.ssi.2025.116854","url":null,"abstract":"<div><div>For battery architectures that need a solid ion conductor with good contacting performance and high stability against electrochemical oxidation, polymerized ionic liquids (PIL) pose a valuable class of materials. The low conductivity of the binary PIL/ lithium salt system can be increased using a ternary ionic liquid acting as plasticiser. The conductive mechanism of the ternary system is however not fully understood. This work shows the shift in conduction mechanism for the ternary Li−/[1,3]PYR-/PDADMA-FSI system by increasing the lithium salt concentration and comparing the transfer mechanism to binary ionic liquid (IL) electrolyte analogues using pulsed field gradient (PFG) nuclear magnetic resonance (NMR), NMR relaxometry, Raman spectroscopy and electrochemical techniques. Two conducting regimes were found which show a strong trade-off between conductivity and transference number. In the low lithium salt regime (≤35 wt% LiFSI), cluster diffusion of aggregated lithium is the dominating mechanism leading to low transference numbers (0.04–0.15 at room temperature (RT)). The high salt regime (≥50 wt% LiFSI) shows diffusion through free lithium ion hopping transfer, which has a stronger dependence on temperature and yields higher transference numbers (0.31 at RT). Increasing lithium salt concentration shows an inverse linear correlation with conductivity. The electrochemical characteristics of ternary IL/PIL/lithium salt are shown to be highly tuneable by varying the lithium salt fraction, while it maintains excellent characteristics like processability, stability and mechanical function.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116854"},"PeriodicalIF":3.0,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143783459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zirconia-free fine-grained NASICON-type solid electrolyte prepared from Mg2+, Y3+ co-doping zirconia precursors 由Mg2+, Y3+共掺杂氧化锆前驱体制备无氧化锆细晶nasicon型固体电解质
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-04-05 DOI: 10.1016/j.ssi.2025.116856
Tianrun Li, Meihua Liu, Xiaolin Zhang, Guoqiang Li, Shixin Xiao
{"title":"Zirconia-free fine-grained NASICON-type solid electrolyte prepared from Mg2+, Y3+ co-doping zirconia precursors","authors":"Tianrun Li,&nbsp;Meihua Liu,&nbsp;Xiaolin Zhang,&nbsp;Guoqiang Li,&nbsp;Shixin Xiao","doi":"10.1016/j.ssi.2025.116856","DOIUrl":"10.1016/j.ssi.2025.116856","url":null,"abstract":"<div><div>The increasing demand for all-solid-state batteries with high energy density and enhanced safety has attracted attention to the development of high-performance solid-state electrolytes. NASICON-structured Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> is considered as a promising solid-state electrolyte material due to its superior thermal and chemical stability. However, its practical application is constrained by the presence of monoclinic ZrO<sub>2</sub> (m-ZrO<sub>2</sub>) impurity phase and low ionic conductivity at room temperature. This study presents the synthesis of fine-grained (0.5–0.7 μm) NASICON-type materials free from m-ZrO<sub>2</sub> impurity phase via a solid-state method, and using Mg<sup>2+</sup> and Y<sup>3+</sup> co-doped zirconia precursor as a substitute for conventional zirconia. The elimination of the m-ZrO<sub>2</sub> impurity phase and the implementation of Mg<sup>2+</sup> and Y<sup>3+</sup> co-doping strategy simultaneously optimized the bulk and grain boundary structure, reduced resistance, and enlarged the bottleneck size of Na<sup>+</sup> ion transport channels. AC impedance spectroscopy analysis revealed that the room temperature conductivity of Na<sub>3.32</sub>Mg<sub>0.16</sub>Zr<sub>1.84</sub>Si<sub>2</sub>PO<sub>12</sub> doped with 8 mol% MgO increased from 0.43 mS cm<sup>−1</sup> to 1.10 mS cm<sup>−1</sup>, and further increased to 2.32 mS cm<sup>−1</sup> upon substitution of MgO with 2 mol% Y<sub>2</sub>O<sub>3</sub> in Na<sub>3.32</sub>Mg<sub>0.12</sub>Y<sub>0.08</sub>Zr<sub>1.84</sub>Si<sub>2</sub>PO<sub>12</sub>. This study presents a feasible approach to enhance the ionic conductivity of NASICON-structured solid-state electrolytes through the regulation of multiple factors.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116856"},"PeriodicalIF":3.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143776761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical assessment of cobalt-free Li2MnO3-based layered materials for Li battery applications 锂电池应用中无钴li2mno3基层状材料的实际评估
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-04-03 DOI: 10.1016/j.ssi.2025.116855
Yosuke Ugata , Chihaya Motoki , Tokuhiko Handa , Naoaki Yabuuchi
{"title":"Practical assessment of cobalt-free Li2MnO3-based layered materials for Li battery applications","authors":"Yosuke Ugata ,&nbsp;Chihaya Motoki ,&nbsp;Tokuhiko Handa ,&nbsp;Naoaki Yabuuchi","doi":"10.1016/j.ssi.2025.116855","DOIUrl":"10.1016/j.ssi.2025.116855","url":null,"abstract":"<div><div>As cost-effective and Co-free positive electrode materials, a solid solution material between Li<sub>2</sub>MnO<sub>3</sub> and LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>, Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub>, delivers a large reversible capacity over 220 mA h g<sup>−1</sup> through reversible anionic redox of oxide ions. However, a practical problem of this material is found in the insufficient reversibility as electrode materials associated with partial oxygen loss during charging process. In this study, Li<sub>1.2</sub>Al<sub>0.04</sub>Ni<sub>0.18</sub>Mn<sub>0.58</sub>O<sub>2</sub>, where Ni and Mn ions in Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub> are partially substituted with Al ions, is synthesized <em>via</em> a solid-state reaction. Li<sub>1.2</sub>Al<sub>0.04</sub>Ni<sub>0.18</sub>Mn<sub>0.58</sub>O<sub>2</sub> samples with the optimized surface area are further synthesized at different calcination temperatures. Al<sup>3+</sup>-substituted sample with the optimized surface area partially suppresses the capacity fading and voltage decay on continuous electrochemical cycles, ∼ 500 cycles. Moreover, the use of highly concentrated electrolytes with high oxidative stability efficiently improves electrode reversibility of Li<sub>1.2</sub>Al<sub>0.04</sub>Ni<sub>0.18</sub>Mn<sub>0.58</sub>O<sub>2</sub>. Nevertheless, important practical problems are still found in inevitable voltage decay and inferior charge rate capability, both originating from the character of anionic redox reaction. Further research efforts are necessary to overcome these drawbacks and to adopt Mn-based electrode materials with anionic redox for practical battery applications, especially for electric vehicles.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116855"},"PeriodicalIF":3.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoride-ion conductivity of scheelite-type LiYb1-xMxF4±x (M = Mg, Ca, Sr, Hf) 白钨矿型LiYb1-xMxF4±x (M = Mg, Ca, Sr, Hf)的氟离子电导率
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-04-02 DOI: 10.1016/j.ssi.2025.116851
Kota Onuki , Naoki Matsui , Kota Suzuki , Masaaki Hirayama , Ryoji Kanno
{"title":"Fluoride-ion conductivity of scheelite-type LiYb1-xMxF4±x (M = Mg, Ca, Sr, Hf)","authors":"Kota Onuki ,&nbsp;Naoki Matsui ,&nbsp;Kota Suzuki ,&nbsp;Masaaki Hirayama ,&nbsp;Ryoji Kanno","doi":"10.1016/j.ssi.2025.116851","DOIUrl":"10.1016/j.ssi.2025.116851","url":null,"abstract":"<div><div>Fluorite-type fluoride-ion conductors have been widely studied, whereas fluorite-derivative structures remain untapped material spaces as fluoride-ion conductors. In this study, fluoride-ion conductivities in scheelite-type LiYb<sub>1-<em>x</em></sub><em>M</em><sub><em>x</em></sub>F<sub>4±<em>x</em></sub> (<em>M</em> = Mg, Ca, Sr, and Hf) solid solutions were investigated. Introduction of fluorine-vacancy through aliovalent cation-substitution significantly enhanced ionic conductivity, with 15 % Ca<sup>2+</sup> substitution for Yb<sup>3+</sup> exhibiting a maximum conductivity of 1.7 × 10<sup>−5</sup> S cm<sup>−1</sup> at 473 K. Structural analysis confirmed the formation of F vacancies, whereas bond valence energy landscape calculations revealed low-barrier conduction pathways. Furthermore, molecular dynamics simulations revealed distinct fluoride migration pathway near the Ca<sup>2+</sup>-doped and undoped regions. These findings offer new insights into the fluoride-ion conduction mechanisms in fluorite-related structures.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"424 ","pages":"Article 116851"},"PeriodicalIF":3.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent reconstruction and interfacial fluorination strategy for high-performance polyether lithium metal batteries 高性能聚醚锂金属电池的溶剂重构及界面氟化策略
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-25 DOI: 10.1016/j.ssi.2025.116849
Haofeng Peng, Zixuan Fang, Ming Zhang, Mengqiang Wu
{"title":"Solvent reconstruction and interfacial fluorination strategy for high-performance polyether lithium metal batteries","authors":"Haofeng Peng,&nbsp;Zixuan Fang,&nbsp;Ming Zhang,&nbsp;Mengqiang Wu","doi":"10.1016/j.ssi.2025.116849","DOIUrl":"10.1016/j.ssi.2025.116849","url":null,"abstract":"<div><div>Lithium metal batteries based on in situ semi-solid-state polyether electrolytes have emerged as a focal point of contemporary research due to their straightforward fabrication process, high energy density, and reliable safety. The DOL monomers exhibit characteristics of low viscosity and polymerization initiated by lithium salts at room temperature, presenting a significant commercial potential for the preparation of PDOL semi-solid-state electrolytes via in situ ring-opening polymerization for high-performance lithium metal batteries. However, the intrinsic performance deficiencies and poor antioxidant properties of polyether electrolytes have severely impeded their practical application. The utilization of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) as a diluent and fluoroethylene carbonate (FEC) as an additive for solvent reconstruction and interfacial fluorination of the semi-solid-state polyether electrolytes has effectively mitigated these issues. Density functional theory and molecular dynamics simulations demonstrate that the TTE diluent can optimize the solvent structure and enhance anionic coordination, thereby improving the electrochemical performance of PDOL-based electrolytes, which enables stable cycling of Li/Li symmetric batteries for over 2000 h at 0.1 mA cm <sup>−</sup> <sup>2</sup>. Furthermore, the introduction of the fluorinated additive FEC has achieved exceptional performance in Li/NCM811 high-voltage lithium metal batteries, with an initial discharge specific capacity of 206.3 mAh g<sup>−1</sup> at 0.1C and stable charge-discharge cycling at 0.3C.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116849"},"PeriodicalIF":3.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143695911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economical, ecofriendly and easy to handle polymer-in-salt-electrolyte 经济、环保、易于处理的盐电解质聚合物
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-25 DOI: 10.1016/j.ssi.2025.116848
Dipti Yadav, Kanak Aggarwal, Neelam Srivastava
{"title":"Economical, ecofriendly and easy to handle polymer-in-salt-electrolyte","authors":"Dipti Yadav,&nbsp;Kanak Aggarwal,&nbsp;Neelam Srivastava","doi":"10.1016/j.ssi.2025.116848","DOIUrl":"10.1016/j.ssi.2025.116848","url":null,"abstract":"<div><div>Polymer-In-Salt-Electrolytes (PISEs) are an emerging branch of polymer electrolytes which are supposed to address the shortcomings (slow ion movement due to polymer coupled motion and small cationic transference number) of Salt-In-Polymer-Electrolytes (SIPEs), but a PISE, which may be commercially used for fabrication of energy device is still a dream because of recrystallization and brittle matrix at higher salt concentration. Our group has developed a simple solution casting protocol for synthesis of an economical, eco-friendly and easy to handle PISEs from crosslinked starches, where there is no need of getting the molten state salt/salt-mixture. The thought process behind this protocol and selection of starch as host polymer is that the salt breaks the starch into smaller molecules resulting in generation new –OH and –H to interact with salt, i.e. increasing salt concentration itself creates a favorable atmosphere for its acceptance. Starch is hydrophilic in nature and presence of large amount of salt adds up to it, and such materials have moisture content varying from ∼5 % to 25 %, depending to salt and starch combination and concentration, which is a favorable property leading the synthesized PISEs to behave as Water-In-Polymer-Salt-Electrolytes (WiPSEs). By exposing the freshly synthesized samples to high humidity these materials were stabilized with respect to ambient humidity changes. These materials lead to ESR &lt;10 Ω (reaching to as low as &lt;1 Ω), wide electrochemical stability window (ESW &gt; 2.5 V) and ion relaxation time is of the order of μSec. The supercapacitor fabricated using synthesized PISEs with commonly available supercapacitor electrodes have behavior at par with other electrolytes reported in the literature. With lab-synthesized activated carbons, a capacity of ∼125 F/g has been obtained with columbic efficiency &gt;98 %. Since the synthesis protocol and chemicals used are economical, the starch-based PISEs are economical and also environment benign, because starch is a renewable polymer and the process uses only one extra chemical (methanol as solvent). The material is flexible and can be molded in the desired shape and size and hence is a potential candidate to reach at the commercial level, if explored in detail.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116848"},"PeriodicalIF":3.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring structural, optical, dielectric and electrical attributes of a La based complex perovskite 探索La基复合钙钛矿的结构、光学、介电和电学性质
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-19 DOI: 10.1016/j.ssi.2025.116840
Lipsa Priyadarshini , L. Biswal , Sujata Rout , Karubaki Moharana , Amit Kumar Parida , R.N.P. Choudhary , Santosh Kumar Satpathy
{"title":"Exploring structural, optical, dielectric and electrical attributes of a La based complex perovskite","authors":"Lipsa Priyadarshini ,&nbsp;L. Biswal ,&nbsp;Sujata Rout ,&nbsp;Karubaki Moharana ,&nbsp;Amit Kumar Parida ,&nbsp;R.N.P. Choudhary ,&nbsp;Santosh Kumar Satpathy","doi":"10.1016/j.ssi.2025.116840","DOIUrl":"10.1016/j.ssi.2025.116840","url":null,"abstract":"<div><div>A rare-earth based novel compound with a disordered perovskite structure has been synthesised using the conventional solid-state reaction approach. The structural phase of the compound is analysed using room temperature X-ray diffraction (XRD) data. The refinement of XRD data suggested formation of compound in trigonal phase with R-3c symmetry. Position of peaks in Raman spectra obtained at room temperature further support the proposition of above structure and symmetry of formation. Using scanning electron microscope (SEM) images, the microstructure of the compound and the surface morphology is revealed. EDX analysis presented semi-quantitative information on distribution and weight percentage of elements present, from which the synthesis of the expected compound is substantiated. Examination of optical characteristics via UV–Visible absorption spectroscopy revealed a band gap of 3.2 eV suggesting possible potential applications in optoelectronic and photovoltaic devices. The electric polarisation and relaxation phenomena prevailing in the material as a function of frequency and temperature are extensively studied using data acquired via complex impedance spectroscopy (CIS) technique. A temperature and frequency stable dielectric response in high frequency region recommends use of compound for application at high frequency and temperature. Dominating bulk contribution to overall electrical response and negative temperature coefficient of resistance (NTCR) behaviour is observed. The frequency-dependent ac conductivity data adheres to Jonscher's power law. To estimate the activation energy, which facilitates the identification of the specific charges involved in the ac conduction process, the temperature-dependant ac conductivity data is utilised.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116840"},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition 橄榄石矿物碳酸化行为的原子见解:金属阳离子组成的作用
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-19 DOI: 10.1016/j.ssi.2025.116845
Saisai Zhang, Xinyu Zhang, Li Zhang, Donglin Li, Xuemao Guan, Jianping Zhu, Songhui Liu
{"title":"Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition","authors":"Saisai Zhang,&nbsp;Xinyu Zhang,&nbsp;Li Zhang,&nbsp;Donglin Li,&nbsp;Xuemao Guan,&nbsp;Jianping Zhu,&nbsp;Songhui Liu","doi":"10.1016/j.ssi.2025.116845","DOIUrl":"10.1016/j.ssi.2025.116845","url":null,"abstract":"<div><div>Olivine minerals possess significant potential for CO<sub>2</sub> sequestration through carbonation reactions, with their reactivity highly influenced by cation composition. This study employs first-principles calculations to systematically investigate the impact of metal cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>) on the carbonation behavior of five olivine structures: forsterite (Mg<sub>2</sub>SiO<sub>4</sub>), calcio-olivine (γ-Ca<sub>2</sub>SiO<sub>4</sub>), tephroite (α-Mn<sub>2</sub>SiO<sub>4</sub>), fayalite (α-Fe<sub>2</sub>SiO<sub>4</sub>), and Co-olivine. Analyses of bond characteristics, total bond order density, and local density of states reveal fundamental differences between alkaline earth and transition metal olivines. We have found that in alkaline earth (AE) olivines, carbonation primarily involves an electrophilic attack of O<sup>2−</sup> by H<sup>+</sup> and a nucleophilic attack of metal cations by HCO<sub>3</sub><sup>−</sup>/CO<sub>3</sub><sup>2−</sup> species. Calcio-olivine exhibits higher reactivity than forsterite due to enhanced Ca<sup>2+</sup> nucleophilicity. Conversely, transition metal (TM) olivine reactivity is governed by the multivalent cations, contributing significantly to both electrophilic and nucleophilic pathways. Considering both mineral reserves and carbonation reaction mechanisms, calcio-olivine is determined to be the most advantageous among the five olivine minerals in terms of carbonation reactivity. This atomic-scale understanding guides the development of olivine-based materials with improved carbonation performance for efficient CO<sub>2</sub> sequestration and utilization in carbon capture, utilization, and storage technologies.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116845"},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct influence of Cd in the electrocatalyst of Ni-Co-Cd/CNFs nanoparticles as a catalyst in direct alcohol fuel cells (DAFCs) 镉对Ni-Co-Cd/CNFs纳米颗粒电催化剂直接乙醇燃料电池(DAFCs)的显著影响
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-19 DOI: 10.1016/j.ssi.2025.116846
Al-Anood M. Al-Dies , Somia Awad
{"title":"Distinct influence of Cd in the electrocatalyst of Ni-Co-Cd/CNFs nanoparticles as a catalyst in direct alcohol fuel cells (DAFCs)","authors":"Al-Anood M. Al-Dies ,&nbsp;Somia Awad","doi":"10.1016/j.ssi.2025.116846","DOIUrl":"10.1016/j.ssi.2025.116846","url":null,"abstract":"<div><div>Different percentages of less expensive metal alloy-decorated nanofiber catalysts have been successfully manufactured using the electrospinning method to replace platinum in direct alcohol fuel cells (DAFC). The synthesis and characterization of catalysts, namely Ni-Co-Cd/CNFs, with a metal fixed ratio of 20 % wt. for DAFC applications are the main goals of this work. Two different catalyst concentrations were prepared with fixed nickel concentrations (Ni<sub>12</sub>Co<sub>6</sub>Cd<sub>2</sub> &amp; Ni<sub>12</sub>Co<sub>4</sub>Cd<sub>4</sub>). This research represents the first preparation of ternary Ni-Co-Cd/CNF for DAFC applications. Various methods, including electrochemical tests, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction, are used to characterize the catalysts. Scanning electron microscopy (SEM) revealed that the fabricated sample exhibited a good nanofiber form and a distinct nanoparticle look. The samples' capacity for alcohol electrocatalysis was assessed using cyclic voltammetry, impedance spectroscopy, chronoamperometry, scan rate, and response time. The oxidation peak current density and electrode stability both rise when the concentration of Cd in Ni-Co-Cd/CNF increases. The oxidation peak current density of Ni<sub>12</sub>Co<sub>4</sub>Cd<sub>4</sub> at the optimum ethanol concentration (1 M ethanol in 1 M KOH) is found to be 29.7 mA/cm<sup>2</sup>. While the maximum current density is found to equal 38.86 mA/cm<sup>2</sup>. In addition, the CV results yield the oxidation peak current density to be 3.5 mA/cm<sup>2</sup> at the optimum methanol concentration (1 M methanol in 1 M KOH). Ni<sub>12</sub>Co<sub>4</sub>Cd<sub>4</sub> exhibits promoted electrochemical properties to ethanol electrooxidation rather than methanol oxidation. Furthermore, these findings are enhanced by the highly calculated diffusion coefficient of Ni<sub>12</sub>Co<sub>4</sub>Cd<sub>4</sub> towards ethanol in comparison with methanol (2.30 × 10<sup>−6</sup> cm<sup>2</sup>/s for ethanol and 3.07 × 10<sup>−7</sup> cm<sup>2</sup>/s for methanol). This work has demonstrated how to use a unique technique to develop an efficient alcohol electrooxidation catalyst based on nickel, cobalt, and cadmium nanoparticles.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116846"},"PeriodicalIF":3.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural transformations and proton conductivity of Me4NHSO4 and nanocomposites Me4NHSO4 - SiO2 Me4NHSO4和纳米复合材料Me4NHSO4 - SiO2的结构转变和质子电导率
IF 3 4区 材料科学
Solid State Ionics Pub Date : 2025-03-17 DOI: 10.1016/j.ssi.2025.116810
V.G. Ponomareva, I.N. Bagryantseva, E.S. Shutova, T.N. Drebushchak, N.F. Uvarov
{"title":"Structural transformations and proton conductivity of Me4NHSO4 and nanocomposites Me4NHSO4 - SiO2","authors":"V.G. Ponomareva,&nbsp;I.N. Bagryantseva,&nbsp;E.S. Shutova,&nbsp;T.N. Drebushchak,&nbsp;N.F. Uvarov","doi":"10.1016/j.ssi.2025.116810","DOIUrl":"10.1016/j.ssi.2025.116810","url":null,"abstract":"<div><div>The study is devoted to the quaternary ammonium compounds - Me<sub>4</sub>NHSO<sub>4</sub>. The detailed analysis of the proton conductivity and structural transformations of Me<sub>4</sub>NHSO<sub>4</sub> in a wide temperature range was carried out firstly. A phase transition of Me<sub>4</sub>NHSO<sub>4</sub> at 120°С associated with the appearance of intermediate phase with some orientational disorder of sulfate tetrahedra was observed. The slow rate phase transition at 210 °C to a high-temperature phase was firstly observed. Presumably the high-temperature phase corresponds to a tetragonal syngony. The temperature dependence of the proton conductivity fully corresponds to the structural phase transitions with the significant change of the activation energy at 120 °C from 1.8 eV to 0.7 eV up to 250 °C. The proton conductivity of Me<sub>4</sub>NHSO<sub>4</sub> of the high temperature phase is an order of magnitude higher than that of the related Et<sub>4</sub>NHSO<sub>4</sub> compound and reaches 4*10<sup>−4</sup> S/cm at 250 °C. The electrotransport and structural characteristics of Me<sub>4</sub>NHSO<sub>4</sub> and dispersed silicon dioxide containing composites were also investigated. The investigated (1-x)Me<sub>4</sub>NHSO<sub>4</sub>–xSiO<sub>2</sub> composites (x = 0.5 and 0.7) are characterized by the different degree of salt amorhpization and the conductivity increase.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116810"},"PeriodicalIF":3.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信