Grace Xiong , Ara Jo , Louis S. Wang , Sossina M. Haile
{"title":"High temperature phase transformations and Superprotonic conductivity in Cs2(HSeO4)(H2PO4)","authors":"Grace Xiong , Ara Jo , Louis S. Wang , Sossina M. Haile","doi":"10.1016/j.ssi.2024.116690","DOIUrl":"10.1016/j.ssi.2024.116690","url":null,"abstract":"<div><p>The compound Cs<sub>2</sub>(HSeO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) is of interest due to its high conductivity in its superprotonic state. In the present work, in situ X-ray diffraction studies, simultaneous thermal analysis, and AC impedance spectroscopy, each performed under controlled value of steam partial pressure (<em>p</em>H<sub>2</sub>O), were carried out to elucidate the crystallographic features of the transformation and resolve the conductivity in the high temperature phase. The studies reveal that the material transforms to a cubic phase at a temperature of approximately 116 °C, that the activation energy for proton transport in the cubic phase is 0.304(2) eV, and the magnitude of the conductivity is comparable to that of Cs<sub>2</sub>(HSO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>). Despite differences in the room temperature structures of Cs<sub>2</sub>(HSeO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), Cs<sub>2</sub>(HSO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), and CsH<sub>2</sub>PO<sub>4</sub>, each has a monoclinic to cubic transformation entropy of approximately 23 J/mol(CsH<sub>x</sub>XO<sub>4</sub>)/K. Under <em>p</em>H<sub>2</sub>O = 0.05 atm, the cubic phase of Cs<sub>2</sub>(HSeO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) is stable to approximately 250 °C. Under elevated <em>p</em>H<sub>2</sub>O (0.3 atm), exsolution of a trigonal phase, with structure analogous to that of Cs<sub>3</sub>H(SeO<sub>4</sub>)<sub>2</sub>, was found to accompany the transformation to the cubic phase. While the driver for this transformation is not fully known, the cell volumes of both the exsolved and matrix phases indicate they are chemically distinct, respectively, from Cs<sub>3</sub>H(SeO<sub>4</sub>)<sub>2</sub> and Cs<sub>2</sub>(HSeO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), suggesting additional chemical levers for control of transformation behavior.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116690"},"PeriodicalIF":3.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural reversibility and charge-discharge cycle of Li2S-V2S3-LiI positive electrodes for all-solid-state lithium batteries","authors":"Masato Osaki , Hirofumi Tsukasaki , Hiroshi Nakajima , Tatsuki Shigedomi , Atsushi Sakuda , Akitoshi Hayashi , Shigeo Mori","doi":"10.1016/j.ssi.2024.116683","DOIUrl":"10.1016/j.ssi.2024.116683","url":null,"abstract":"<div><p>All-solid-state batteries with sulfur-based positive electrode active materials have been attracting much attention regarding their safety and long cycle life. The Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI system with high ionic and electronic conductivity is a promising positive electrode material for sulfide-based all-solid-state batteries. Such cells using Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI in the positive electrode layer operate without conductive carbons and solid electrolytes. In particular, cells using 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI (mol %) exhibit a high capacity and cycle durability even after 100 cycles. To clarify the charge-discharge mechanism of Li<sub>2</sub>S−V<sub>2</sub>S<sub>3</sub>−LiI, we investigated microstructural changes during charge-discharge cycles via transmission electron microscopy (TEM). The microstructure of 90(0.75Li<sub>2</sub>S·0.25V<sub>2</sub>S<sub>3</sub>)·10LiI before charge-discharge measurement was characterized by LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI nanocrystallites in an amorphous matrix. In the Li<sub>2</sub>S−LiI domain, the Li<sub>2</sub>S−LiI nanocrystallites with an antifluorite-type crystal structure amorphized after charging and reprecipitate as Li<sub>2</sub>S−LiI nanocrystallites after discharging. As for LiVS<sub>2</sub>, Li deintercalation and intercalation occurred during the charge-discharge processes. Ex-situ TEM observations demonstrated that the structural reversibility of LiVS<sub>2</sub> and Li<sub>2</sub>S−LiI in an amorphous matrix contributes to high cycle performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116683"},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiachen Lu , Haobo Li , Zihan Zhao , Jixin Wu , Xueyan Wu , Qianli Chen
{"title":"Lattice distortion and strain induced crack formation in Y-doped BaZrO3","authors":"Jiachen Lu , Haobo Li , Zihan Zhao , Jixin Wu , Xueyan Wu , Qianli Chen","doi":"10.1016/j.ssi.2024.116681","DOIUrl":"10.1016/j.ssi.2024.116681","url":null,"abstract":"<div><p>Proton conducting ceramics are promising solid electrolytes for protonic ceramic fuel cells. However, the presence of cracks remains a challenge before successful commercialization of the proton ceramic devices. This study investigates the impact of internal strain and lattice distortion on the crack formation in BaZr<sub>0.8</sub>Y<sub>0.2</sub>O<sub>3-<em>δ</em></sub>. During sintering, pellets are covered with controlled amount of sacrificial powder 2 or 3 times of the pellet mass, and the effects of adding BaCO<sub>3</sub> in the sacrificial powder is studied. The pellets sintered with 2 times sacrificial powder remain intact when dried, yet 53 % show cracks after hydration in 0.03 atm water vapor pressure. All pellets fracture into pieces when sintered with additional BaCO<sub>3</sub> in sacrificial powder, in which 0.07 mol% excessive Ba is observed in the actual composition. These Ba excess pellets show larger lattice constant compared to those prepared under other conditions. Strain analysis indicates that 0.14 % to 0.15 % micro strain is observed in the batches with cracks. Raman spectra reveal higher degree of lattice distortion in the BO<sub>6</sub> octahedra in the cracked batches. The findings highlight the role of lattice distortion in internal strain, and crack formation. This work may contribute to the processing of solid electrolytes in protonic ceramic fuel cells.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116681"},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veeramani Vediyappan , Qiwen Lai , Takaya Fujisaki , John Andrews , Yoshitsugu Sone , Leonard Kwati , Hiroshige Matsumoto
{"title":"Pressurized water electrolysis using hydrophobic gas diffusion layer with a new electrolyzer cell structure","authors":"Veeramani Vediyappan , Qiwen Lai , Takaya Fujisaki , John Andrews , Yoshitsugu Sone , Leonard Kwati , Hiroshige Matsumoto","doi":"10.1016/j.ssi.2024.116678","DOIUrl":"10.1016/j.ssi.2024.116678","url":null,"abstract":"<div><p>Direct production of pressurized hydrogen through polymer exchange membrane (PEM) water electrolysis without the usage of the external compressor is an industrially important approach to maximize energy efficiency. An additional challenge in conventional water electrolyzers is the lack of separation of the generated gases, hydrogen and oxygen, from water. In this report, we demonstrate the operation of a new water electrolysis cell at high inlet water pressure with the assistance of a hydrophobic gas diffusion layer (hydrophobic-GDL). This configuration allows the gas/water separation to take place at the electrode so that pressurized water-free gases can be the output due to water being injected directly into the membrane as a source of electrolysis for a continuous supply of water it prevents membrane dehydration. Another important feature is also the cell can be operable in a reversible operation by combining with fuel cell operation. The membrane electrode assemblies (MEAs) were prepared using the hydrophobic-GDL, a Nafion membrane, and Pt-C/IrO<sub>2</sub> catalysts. Electrolysis experiments were performed at different temperatures with pressurized water (Δ<em>P</em> = 0.05–0.4 MPa based on atmospheric pressure) resulting output was pressurized (0.05–0.4 MPa) hydrogen and oxygen gases. The current densities at 1.6 V of electrolysis voltage were 117, 188, 262 mA cm<sup>−2</sup> at 25, 60, and 80 °C, respectively, and the hydrogen and oxygen gas evolution rates were consistent with theoretical values. It was found that increasing water pressure is beneficial to the electrode kinetics and there was an increase in water transport to the electrode surface as well as efficient gas separation and the production of pressurized gases.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116678"},"PeriodicalIF":3.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingpeng Hou , Jingjin Chen , Xin-Rui Cao , Xiaowen Shi , Shun-Qing Wu , Zi-Zhong Zhu
{"title":"Structural, electronic and diffusion properties of new two-dimensional materials: Li3CrMnX4 (X = S, O)","authors":"Bingpeng Hou , Jingjin Chen , Xin-Rui Cao , Xiaowen Shi , Shun-Qing Wu , Zi-Zhong Zhu","doi":"10.1016/j.ssi.2024.116675","DOIUrl":"10.1016/j.ssi.2024.116675","url":null,"abstract":"<div><p>Exploring high energy density electrode material and superionic conductors are of great significance in fields such as lithium-ion batteries (LIBs). Here, two new 2D materials, i.e., Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub>, are proposed. Theoretical capacities of Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are 314 mAh/g and 419 mAh/g, respectively. The calculations of phonon spectra show that both the materials are dynamical stable. The first-principles molecular dynamics simulations also show that they have thermodynamic stability at room temperature. The calculations on the electronic structures suggest that both materials are semiconductors, and their band gaps are 1.33 eV and 1.67 eV, respectively. The ground states of Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are ferromagnetic and antiferromagnetic, respectively. In order to explore the possibility of these two materials as superionic conductors, the diffusion properties of Li ions are emphasized. The diffusion coefficients of Li ions in both materials reach 10<sup>−5</sup> cm<sup>2</sup>s<sup>−1</sup>, for the Li<sub>3</sub>CrMnS<sub>4</sub>, two Li-ions concerted migration has the highest diffusion coefficient. The minimum migration energy barriers of Li ions in Li<sub>3</sub>CrMnS<sub>4</sub> and Li<sub>3</sub>CrMnO<sub>4</sub> are 0.16 eV and 0.12 eV, respectively. The Li ions migration is dominated by the Li ions between the octahedral layers.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116675"},"PeriodicalIF":3.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeongwon Jeong , Yo Han Kim , Wonjun Jang , Yunseong Ji , Jong-Eun Hong , Jae-ha Myung
{"title":"In-situ prepared co exsolution nano catalyst for efficient hydrogen generation via ammonia decomposition","authors":"Hyeongwon Jeong , Yo Han Kim , Wonjun Jang , Yunseong Ji , Jong-Eun Hong , Jae-ha Myung","doi":"10.1016/j.ssi.2024.116679","DOIUrl":"10.1016/j.ssi.2024.116679","url":null,"abstract":"<div><p>Active and durable catalytic material for ammonia (NH<sub>3</sub>) decomposition reaction is attracting attentions for utilization of NH<sub>3</sub> as an innovative hydrogen carrier. In this study, diverse single metal and alloy nano catalysts are prepared via in-situ exsolution method and their NH<sub>3</sub> decomposition properties are evaluated. Transition metal cations (Ni, Co, Fe ions) are doped into the La<sub>0.43</sub>Ca<sub>0.37</sub>M<sub>x</sub>N<sub>y</sub>Ti<sub>1-(x+y)</sub>O<sub>3-δ</sub> (LCMNT) perovskite oxide structure and exsolved on its surface as supported nano particles under reduction condition. The maximum doping level and chemical composition of exsolution catalysts are investigated to optimize their NH<sub>3</sub> decomposition activity. The exsolution catalyst demonstrates improved NH<sub>3</sub> decomposition characteristics compared to conventionally prepared infiltration catalysts, indicating higher conversion efficiency and H<sub>2</sub> production rate. The exsolved nano catalysts also exhibit great thermochemical stability against catalyst agglomeration or surface nitriding. The results obtained in this study suggest the potential utilization of exsolution catalysts for on-site production of H<sub>2</sub> through NH<sub>3</sub> decomposition catalysis.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116679"},"PeriodicalIF":3.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yigao Zhang , Haiyan Xu , Yang He , Hanxiao Bian , Renhua Jiang , Qiang Zhao , Dongcai Li , Aiguo Wang , Daosheng Sun
{"title":"Zn-doped V2O5 film electrodes as cathode materials for high-performance thin-film zinc-ion batteries","authors":"Yigao Zhang , Haiyan Xu , Yang He , Hanxiao Bian , Renhua Jiang , Qiang Zhao , Dongcai Li , Aiguo Wang , Daosheng Sun","doi":"10.1016/j.ssi.2024.116658","DOIUrl":"10.1016/j.ssi.2024.116658","url":null,"abstract":"<div><p>Zn-doped V<sub>2</sub>O<sub>5</sub> film electrodes were prepared by in-situ growth on indium‑tin oxide (ITO) conductive glass by a low-temperature liquid-phase deposition method and calcined by calcination treatment, and assembled into thin-film zinc-ion batteries (ZIBs). After galvanostatic charge/discharge (GCD) tests with 90 and 200 charge/discharge cycles, the ZIBs system provided specific capacities of 95.7 mAh m<sup>−2</sup> and 63.9 mAh m<sup>−2</sup> with capacity retention rates of 97.88% and 78.72%, respectively. The electrochemical reaction process of the Zn-doped V<sub>2</sub>O<sub>5</sub> film electrode was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to understand the insertion/extraction mechanism of Zn<sup>2+</sup>. The doping of appropriate amount of Zn<sup>2+</sup> in the preparation plays the role of “pillar”, which helps to stabilize the structure of V<sub>2</sub>O<sub>5</sub> and improve the cycling stability and lifetime. Therefore, the research may provide a new idea for the assembly and preparation of thin-film ZIBs with improved performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116658"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youyu Zhu , Xiaofang Tang , Zhenghan Kong , Zonglin You , Yixi Zhang , Yingfeng Duan , Yating Zhang
{"title":"Pre-oxidation modification of bituminous coal-based hard carbon for high-quality sodium ion storage","authors":"Youyu Zhu , Xiaofang Tang , Zhenghan Kong , Zonglin You , Yixi Zhang , Yingfeng Duan , Yating Zhang","doi":"10.1016/j.ssi.2024.116668","DOIUrl":"10.1016/j.ssi.2024.116668","url":null,"abstract":"<div><p>Bituminous coal, with its moderate anthracene content, high reactivity, and ease of modulation, stands out as a favorable choice as a precursor for hard carbon. However, due to the highly condensed aromatic rings in bituminous coal, it tends to form highly graphitized structures after high-temperature carbonization. Therefore, pretreatment of bituminous coal is necessary to suppress the graphitization process. Here, we combine pre-oxidation techniques with high-temperature carbonization to produce a cost-effective, high carbon yield, and superior performance coal-based hard carbon. When utilized as anode for sodium-ion batteries, the prepared coal-based hard carbon exhibits a high reversible capacity of 313.5 mAh g<sup>−1</sup>, along with excellent rate capability and long cycling stability.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116668"},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Ao , Haonan Chen , Kai Deng , Meifen Wu , Xiangwei Wu , Zhaoyin Wen
{"title":"Hollow nickel sources for improving nickel utilization in Zebra batteries","authors":"Xin Ao , Haonan Chen , Kai Deng , Meifen Wu , Xiangwei Wu , Zhaoyin Wen","doi":"10.1016/j.ssi.2024.116660","DOIUrl":"10.1016/j.ssi.2024.116660","url":null,"abstract":"<div><p>The Zebra (Na-NiCl<sub>2</sub>) batteries are regarded as a promising option for large-scale electrical energy storage due to their plentiful electrode material resources, high energy density, and safety features. In the cathode of Zebra battery, the nickel powders serve as both an active material and a conductive agent. In practice, its amount is significantly greater than its theoretical usage, often exceeding three times the theoretical amount. Hence, the presence of ultra-excessive nickel results in high material costs, posing obstacles to the wider implementation of Zebra batteries. To address this problem, we introduce hollow nickel source as active material to improve the nickel utilization in Zebra battery. In this work, we assemble Zebra batteries using nickel hollow spheres (NHS) with sizes of ∼200 nm, ∼500 nm, ∼1 μm and ∼ 5 μm as nickel source. The battery using NHSs with a size of 1 μm exhibits the best cycling performance and the lowest polarization voltage. By reducing the Ni(NHS, ∼1 μm)/NaCl mass ratio to 1.0, 60% theoretical capacity can be achieved after 170 cycles at 260 °C, which surpasses the traditional batteries using solid nickel source at the same Ni/NaCl ratio. This performance is comparable to that of traditional solid nickel sources with a mass ratio of 1.5 to NaCl. Therefore, using NHS as the nickel source in Zebra batteries reduces nickel usage by 33% without compromising performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116660"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaoli Wang , Maohui Bai , Mengran Wang , Bo Hong , Yexiang Liu
{"title":"Weakened functional group activity enables the uniform distribution of the gel electrolyte to achieve the high-performance of Li-ion batteries","authors":"Jiaoli Wang , Maohui Bai , Mengran Wang , Bo Hong , Yexiang Liu","doi":"10.1016/j.ssi.2024.116659","DOIUrl":"10.1016/j.ssi.2024.116659","url":null,"abstract":"<div><p>Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH<sub>3</sub>) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH<sub>3</sub> functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116659"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}