{"title":"Effect of yttrium ion on the space charge potential across grain boundaries regions of gadolinia-doped ceria electrolytes","authors":"Eduarda Gomes , Devaraj Ramasamy , António A.L. Ferreira , João C.C. Abrantes","doi":"10.1016/j.ssi.2024.116610","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116610","url":null,"abstract":"<div><p>In the present work, gadolinium-doped ceria-based powders were co-fired with additions of 1% (<em>w</em>/w) of SiO<sub>2</sub>, and 5% (w/w) of Y<sub>2</sub>O<sub>3</sub> to test the role of yttrium ion on improving the grain boundary conductivity across the grain boundary regions of low grade gadolinia-doped ceria (CGO) electrolytes. The samples were prepared by hot press at low temperature (1000 °C) to minimize bulk dissolution of yttrium in the CGO lattice. Structural characterization by XRD of the prepared ceramics confirms a CGO single phase material with the fluorite type structure. All the samples were characterized by impedance spectroscopy as a function of temperature in air, in order to de-convolute different microstructural contributions to the overall electrical behaviour. The results showed, as expected, that the presence of small amounts of impurity of silica reduces the total conductivity, when compared with pure CGO ceramic sample. The grain boundary resistance of these ceramics, under low operating temperatures, has a large effect on the total conductivity and is related, on one hand with the presence of a space charge layer created by the local segregation of trivalent rare earth elements, and the consequently depletion of oxygen vacancies, and on the other hand by the blocking effect of the silicon impurity. However, the obtained results show that addition of yttria increases total conductivity when compared with impure samples without yttria. This effect was related with the partial recover of specific grain boundary conductivity, suggesting a preferential location of Si and Y cations on grain boundaries. The space charge potential values, calculated using impedance data, provided an approach to the promoting effect of recovering grain boundary conductivity by the yttrium ion.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116610"},"PeriodicalIF":3.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167273824001589/pdfft?md5=1ccb5e7c5966bf3fe2d4e9e3a0f97dd0&pid=1-s2.0-S0167273824001589-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of A-site defects in Sc-doped CaTiO3 oxides on proton-oxide ion mixed conduction properties","authors":"Shin-ichi Hashimoto , Hiroaki Kato , Mei Nakane , Tomoaki Namioka , Katsuhiro Nomura","doi":"10.1016/j.ssi.2024.116570","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116570","url":null,"abstract":"<div><p>In this study, A-site defective Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> oxides were prepared to examine their ionic conduction properties. The electrical conductivities of two typical compositions were measured as functions of oxygen partial pressure <em>P</em><sub>O2</sub>, temperature, and humidity. Additionally, phase transition, chemical expansion, and CO<sub>2</sub> tolerance were examined in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> using an atmosphere-controlled high-temperature X-ray diffraction. In Ca<sub>0.947</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>, the ionic conduction domain over a wide range of <em>P</em><sub>O2</sub> was observed at 500–800 °C, even though the humidity dependence of conductivities was confirmed only at 500 °C. Conversely, in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>, the conductivities were enhanced in humidified atmospheres at 500–800 °C, while the ionic conductivities in dry atmospheres were higher than those of 8YSZ. As protonic and oxide ionic conductivities are comparable, the proton-oxide ion mixed conduction can be considered to occur in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>. Therefore, a small percentage of Ca defect in Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> affects not only conductivity but also conductive ionic species. Furthermore, Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> did not show any phase transition and chemical expansion with hydration up to 900 °C. The crystal phase of Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> during the CO<sub>2</sub> tolerance test was observed to be stable. Therefore, the material properties of Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> suggest its high potential as electrolytes in high temperature electrochemical devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116570"},"PeriodicalIF":3.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Star-shaped lithium nitride passivation layer obtained by atmospheric-pressure plasma treatment for rechargeable lithium metal batteries","authors":"Vijay Shankar Rangasamy , Bert Verheyde , Dirk Vangeneugden , Myrjam Mertens , Savitha Thayumanasundaram , Danny Havermans , Erwin Van Hoof , Pieter Lens , Annick Vanhulsel","doi":"10.1016/j.ssi.2024.116609","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116609","url":null,"abstract":"<div><p>Lithium metal anodes are indispensable to realize the maximum energy density in future generation batteries. However, the lithium surface must be ‘protected’ to suppress its high reactivity and to stabilize its deposition and dissolution. Here, we report a process to form a lithium nitride (Li<sub>3</sub>N) protective layer on lithium by a two-minute treatment in a dielectric barrier discharge (DBD) plasma. The process does not require low-pressure conditions or time-intensive post-treatments. The passivation layer is characterized by a unique, hexagonal bipyramid morphology, with α-Li<sub>3</sub>N crystals stacked to form pillar-like structures. Such an arrangement is shown to be favorable for fast Li<sup>+</sup> ion diffusion and dendrite prevention, as demonstrated by the stable Li plating/stripping of symmetric cells with passivated lithium (500 cycles compared to 150 cycles with bare lithium) at 1 mA/cm<sup>2</sup>. Full cells with LiNi<sub>0.33</sub>Mn<sub>0.33</sub>Co<sub>0.33</sub>O<sub>2</sub> (NMC111) cathode and passivated lithium anode retain 74% of their initial capacity after 300 cycles at 1C rate, by which time the cells with bare Li anode fail completely. This approach promises to be a practical solution for lithium passivation at industrial scale.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116609"},"PeriodicalIF":3.2,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A long-side-chain sulfonated ether-free copolybenzimidazole membrane containing alicyclic structure for vanadium redox flow batteries","authors":"Xinxin Wang, Maolian Guo, Tao Ban, Yajie Wang, Jiawang Ma, Zihui Wang, Zhanpeng Jiang, Xiuling Zhu","doi":"10.1016/j.ssi.2024.116601","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116601","url":null,"abstract":"<div><p>The stability and selectivity (balance between ionic conductivity and vanadium permeability) of the ion exchange membrane in vanadium redox flow batteries (VRFB) are critical factors that directly impact the battery's performance and lifetime. Herein, we synthesized an ether-free polybenzimidazole copolymer (mcPBI) with rigid benzene ring and flexible alicyclic structures in the polymer's backbone via solution condensation from 3,3′-diaminobenzidine, isophthalic acid and 1,4-cyclohexanedicarboxylic acid monomers. A series of sulfonated polybenzimidazoles (mcPBI-S-x) with long side chains and different grafting degrees were synthesized through grafting reactions, and membranes were prepared by the solution casting method. Microphase separation structure created by grafting accelerates ion transport. Protonated imidazole in an acidic environment enhances proton transport while impeding vanadium penetration due to the Donnan effect. Additionally, the ionic cross-linking between the sulfonic acid group and the imidazole group is in favor of dimensional stability maintenance. The ether-free polymer backbone is conducive to maintaining stability. The results show that all mcPBI-S-x membranes exhibit excellent ion selectivity. Specifically, the mcPBI-S-32% membrane demonstrates optimal ion selectivity (9.06 × 10<sup>7</sup> S s cm<sup>−3</sup>), low area resistance of 0.45 Ω cm<sup>2</sup>, vanadium permeability (0.76 × 10<sup>−10</sup> cm<sup>2</sup> s<sup>−1</sup>) and swelling ratio in sulfuric acid (4.3%). The battery with the mcPBI-S-32% membrane demonstrates a coulomb efficiency of 90.50%, a voltage efficiency of 85.69%, and an energy efficiency of 77.55% at a current density of 60 mA cm<sup>−2</sup>. What's more, the membrane shows excellent chemical stability, and the chemical structure of mcPBI-S-32% characterized by <sup>1</sup>H NMR does not change after 200 cycles at 120 mA cm<sup>−2</sup>.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116601"},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shujahadeen B. Aziz , Rebar T. Abdulwahid , Hawzhin B. Tahir , Ahmed F. Abdulrahman , Ary R. Murad , Niyaz M. Sadiq , Muhamad H. Hamsan , Sameerah I. Al-Saeedi , Mohd F.Z. Kadir , Samir M. Hamad
{"title":"Investigating electrical and dielectric characteristics of sodium chloride-based biodegradable polymer blend electrolytes for sustainable energy storage technology","authors":"Shujahadeen B. Aziz , Rebar T. Abdulwahid , Hawzhin B. Tahir , Ahmed F. Abdulrahman , Ary R. Murad , Niyaz M. Sadiq , Muhamad H. Hamsan , Sameerah I. Al-Saeedi , Mohd F.Z. Kadir , Samir M. Hamad","doi":"10.1016/j.ssi.2024.116606","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116606","url":null,"abstract":"<div><p>This work explores green chemistry and the development of sustainable energy storage devices using non-toxic materials. In the fabrication process of electrodes activated carbon materials were used to create symmetrical electrodes. A solid polymer electrolyte (SPE) system is then formed through solution casting, utilizing chitosan (CHSN) and poly(2-ethyl-2-oxazoline) (POZ) as the polymer hosts to facilitate ionic transport with sodium chloride (NaCl) with the aid of plasticizer. Notably, the CSOZN5 system exhibits a relatively high conductivity of 3.59 × 10<sup>−4</sup> S cm<sup>−1</sup>. The non-Debye relaxation is indicated by the depressed semicircle, with a diameter below the real-axis and the asymmetry-broadness of tanδ. The electric and dielectric characteristics show similar trends with plasticizer concentration, with the highest dielectric constant recorded for the best ion-conducting sample. The electric modulus loss peak shift toward higher frequency indicated enhancement in the ionic movement for high plasticized systems. Through transference number measurement (TNM), the contribution of ions to the overall conductivity is identified, with the best ion-conducting plasticized CHSN:POZ:NaCl film demonstrating potential stability reaching 2.6 <em>V</em>. The capacitive behavior of the constructed electric double-layer capacitor (EDLC) is analyzed using the cyclic voltammetry (CV) test, revealing a specific capacitance (Cspe) of 9.11 F/g at 20 mV/s, signifying the possibility of green energy storage technologies with environmentally friendly materials.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116606"},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan Liu , Bin-Bin Sui , Peng-Fei Wang , Zhe Gong , Yu-Hang Zhang , Yu-Han Wu , Jun-Jie Tang , Fa-Nian Shi
{"title":"In situ construction of hydrogel coatings on zinc foil surfaces to improve the stability of aqueous zinc-ion batteries","authors":"Huan Liu , Bin-Bin Sui , Peng-Fei Wang , Zhe Gong , Yu-Hang Zhang , Yu-Han Wu , Jun-Jie Tang , Fa-Nian Shi","doi":"10.1016/j.ssi.2024.116604","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116604","url":null,"abstract":"<div><p>Zinc metal anodes produce side reactions such as dendrite growth and surface corrosion during cycling, leading to premature battery failure. For this reason, we propose an anodic protection strategy for coating sodium carboxymethyl cellulose (CMC) hydrogel material on the surface of zinc foil. This non-conducting 3D porous interconnected network coating acts as a barrier to regulate the flux of zinc ions and electric field distribution, induces zinc to exhibit 3D deposition, and inhibits the growth of dendritic protrusions.The Zn@CMC anode possesses enhanced desolvation capability, which accelerates the rapid transfer of zinc ions, exhibits enhanced kinetics, and inhibits the occurrence of side reactions. The symmetric cell based on CMC hydrogel can be recycled for 1000 h at a current density of 0.5 mA cm<sup>−2</sup> with low voltage hysteresis, and the Zn@CMC//Na-doped VO<sub>2</sub> full cell can maintain a discharge specific capacity of 119 mAh g<sup>−1</sup> after 1500 cycles, which is of good practical performance. This study provides a new perspective for the introduction of CMC hydrogel for interfacial modification, which is of reference value for solving interfacial problems.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116604"},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Ali Badragheh , Vanessa Miß , Luisa Ludwig , Bernhard Roling , Michael Vogel
{"title":"Lithium ion dynamics and transport in the halide-rich argyrodite Li5.5PS4.5Cl1.5: Influence of heat treatment on cooperativity, heterogeneity and subdiffusion","authors":"Mohammad Ali Badragheh , Vanessa Miß , Luisa Ludwig , Bernhard Roling , Michael Vogel","doi":"10.1016/j.ssi.2024.116608","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116608","url":null,"abstract":"<div><p>We combine <sup>7</sup>Li NMR relaxometry and diffusometry with electrochemical impedance spectroscopy to unravel the mechanisms for the dynamics and transport of lithium ions in the lithium-deficient and halide-rich argyrodite Li<sub>5.5</sub>PS<sub>4.5</sub>Cl<sub>1.5</sub>. In particular, we determine the effects of heat treatment on the cooperativity, heterogeneity, and subdiffusion of lithium ion motion. We find that heat treatment results in an enhancement of the <em>dc</em> conductivity by a factor of six to a high room-temperature value of <span><math><msub><mi>σ</mi><mi>dc</mi></msub><mo>=</mo><mn>14.9</mn></math></span> mScm<sup>−1</sup>, whereas the change of the <sup>7</sup>Li NMR self-diffusion coefficients <span><math><mi>D</mi></math></span> is considerably smaller. Accordingly, heat-treated Li<sub>5.5</sub>PS<sub>4.5</sub>Cl<sub>1.5</sub> shows a very small Haven ration of <span><math><msub><mi>H</mi><mi>R</mi></msub><mo>=</mo><mn>0.13</mn></math></span> indicative of a high cooperativity of lithium ion dynamics. Moreover, after heat treatment, the collective correlation factor <span><math><msub><mi>f</mi><mi>I</mi></msub></math></span> becomes very small, which is related to a strongly reduced relevance of subdiffusive lithium ion dynamics. However, heat treatment does not affect the activation energies, which are in the range <span><math><msub><mi>E</mi><mi>a</mi></msub><mo>=</mo><mn>0.34</mn><mo>−</mo><mn>0.40</mn></math></span> eV for the <em>dc</em> conductivity <span><math><msub><mi>σ</mi><mi>dc</mi></msub></math></span>, the diffusion coefficient <span><math><mi>D</mi></math></span> and also for the jump correlation time <span><math><mi>τ</mi></math></span>. <sup>7</sup>Li NMR field-cycling relaxometry allows for a characterization of the lithium ion jumps based on a frequency-dependent dynamical susceptibility. We find that the susceptibility peak has a strongly asymmetric shape with a hardly broadened low-frequency flank and a strongly broadened high-frequency flank, reflecting a characteristic heterogeneity of the lithium ion dynamics, which derives from the specific cage-like arrangement of the lithium sites and the resulting difference in the rates of intra-cage and inter-cage jumps. Considering further the anion disorder in the crystal lattice, we propose that heat treatment facilitates cooperative inter-cage jumps, suppressing localized subdiffusive motion and enabling long-range ion transport along percolating pathways.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116608"},"PeriodicalIF":3.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167273824001565/pdfft?md5=802b70eb2df32ba5c673481b444e3f95&pid=1-s2.0-S0167273824001565-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of porous La0.6Sr0.4Co0.8Fe0.2O3-δ based cathode films for intermediate temperature solid oxide fuel cells. An electrochemical impedance study","authors":"Bernard A. Boukamp , Jean-Claude Carru","doi":"10.1016/j.ssi.2024.116600","DOIUrl":"10.1016/j.ssi.2024.116600","url":null,"abstract":"<div><p>The La<sub>x</sub>Sr<sub>1-x</sub>Co<sub>y</sub>Fe<sub>1-y</sub>O<sub>3-δ</sub> family of mixed conducting materials shows high electron- and oxygen ion conductivity, together with an appreciable catalytic activity for dissociation of ambient oxygen. These properties are of importance for solid oxide fuel cells. In this family of compounds, La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF6428) has been well-studied, both fundamentally and in actual applications. The related composition, La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> (LSCF6482) has received much less attention despite its higher electronic and ionic conductivity. Literature results show for this composition sometimes rather conflicting results.</p><p>The finegrained (100-150 nm) porous LSCF6482 electrodes show at higher temperatures a low-frequency dispersion, in the frequency range of ∼0.01–10 Hz. This dispersion is the result of gas phase diffusion limitation (GDL) coupled to the redox behavior of the mixed conducting LSCF6482. Applying a dense, thin layer of LSCF6482 between electrolyte and porous electrode improves the electrode properties, as it removes the ‘bottle neck’ for charge transfer of surface adsorbed oxygen moieties.</p><p>Mixing Gd-doped cerium oxide, Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (CGO) with LSCF6482 in a porous electrode structure improves the electrode properties significantly as CGO has apparently a better catalytic activity for oxygen dissociation. The mid-frequency capacitance, <em>C</em><sub>mid</sub>, is assigned to surface charge, i.e. adsorbed O<sub>ad</sub><sup>−</sup> species. The introduction of CGO in the electrode appears to shift the dissociative adsorption of oxygen from the LSCF surface to the catalytically more active CGO surface. The significantly lower area specific resistance (ASR) is, however, strongly dominated by a larger GDL contribution at temperatures above ∼600 °C.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116600"},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Wen Chao Chen , Shi Jia Li , Xin Feng Li , Hao Miao Ouyang
{"title":"Functional modification of polypropylene separators with solid electrolyte LATP and SiO2 coatings for lithium batteries","authors":"Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Wen Chao Chen , Shi Jia Li , Xin Feng Li , Hao Miao Ouyang","doi":"10.1016/j.ssi.2024.116603","DOIUrl":"10.1016/j.ssi.2024.116603","url":null,"abstract":"<div><p>The separator is crucial to the performance and safety of the battery. This study prepared a polypropylene (PP) /solid electrolyte Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) /SiO<sub>2</sub> composite separator (PP/LATP/SiO<sub>2</sub>). The experimental results demonstrate significant enhancements in the electrolyte wettability and thermal stability of the separator. Furthermore, the lithium-ion transference number (<span><math><msup><mi>t</mi><mo>+</mo></msup></math></span>) has been raised from 0.22 to 0.56. In electrochemical performance tests, the lithium symmetric battery assembled with the PP/LATP/SiO<sub>2</sub> composite separator exhibits an exceptionally long cycle life, sustaining stable cycling for 900 h at a current density of 0.5 mA cm<sup>−2</sup>. This composite separator, combining the solid electrolyte and SiO<sub>2</sub> layer, effectively facilitates lithium-ion transport and reduces the occurrence of electrode side reactions, thereby enhancing the performance and safety of the battery.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116603"},"PeriodicalIF":3.2,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamid Ali , Muhammad Zahir Iqbal , Asma Khizar , Md Rezaul Karim , Chang-Hyung Choi , Saikh Mohammad Wabaidur
{"title":"Synergistic effect of co-sputtered tungsten-titanium nitride as electrode material for efficient hybrid supercapacitors","authors":"Hamid Ali , Muhammad Zahir Iqbal , Asma Khizar , Md Rezaul Karim , Chang-Hyung Choi , Saikh Mohammad Wabaidur","doi":"10.1016/j.ssi.2024.116574","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116574","url":null,"abstract":"<div><p>The dawn of bimetallic transition metal nitrides has attracted considerable interest as battery grade electrode material for potential energy storage applications. In addition, it is essential to investigate binder-free processes to improve the performance of the fabricated electrodes. In this study, binder-free tungsten‑titanium nitrides (W-TiN) are deposited through RF/DC magnetron co-sputtering onto the conducting nickel foam (NF). SEM, EDX and X-ray diffraction are exploited to investigate surface morphology, elemental composition, and structural properties of sputtered materials. The W-TiN electrodes are characterized through electrochemical investigation in half-cell configuration. The tested W-TiN electrode is further utilized with activated carbon (AC) electrode to develop hybrid supercapacitor device W-TiN//AC. The hybrid device revealed a maximum energy density (E<sub>s</sub>) of 88.8 Wh/kg and power density (P<sub>s</sub>) 1700 W /kg. To further understand the mechanism of hybrid devices, the capacitive and diffusive contributions are computed using linear and quadradic models. This study provides a new direction to integrate co-sputtered binder-free electrode materials and devices for large scale production of advanced hybrid energy storage devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116574"},"PeriodicalIF":3.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}