Enhanced electrochemical performance of La0.6Mo0.4Fe1-xNixO3 perovskite oxide nano-ceramics for supercapacitor electrodes and lithium-ion battery anodes

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
M.S. Shalaby , Soraya Abdelhaleem , M.I.A. Abdel Maksoud , M. Salah , Nashwa M. Yousif
{"title":"Enhanced electrochemical performance of La0.6Mo0.4Fe1-xNixO3 perovskite oxide nano-ceramics for supercapacitor electrodes and lithium-ion battery anodes","authors":"M.S. Shalaby ,&nbsp;Soraya Abdelhaleem ,&nbsp;M.I.A. Abdel Maksoud ,&nbsp;M. Salah ,&nbsp;Nashwa M. Yousif","doi":"10.1016/j.ssi.2025.116916","DOIUrl":null,"url":null,"abstract":"<div><div>Only by combining large-scale electrochemical energy with renewable energy sources, like solar or wind power plants, can a green energy ecosystem replace one based on fossil fuel devices for storage. Electrodes for high-capacitive pseudocapacitors could provide high-power output and high-energy storage. Fast, reversible surface faradaic redox reactions are used in electrochemical energy storage, employing pseudocapacitors to produce highly efficient green energy devices cheaply. We describe Ni-doped La<sub>0.6</sub>Mo<sub>0.4</sub>FeO<sub>3</sub> as an electrode material for supercapacitor and Lithium-ion Battery Anode design. The La<sub>0.6</sub>Mo<sub>0.4</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> (x = 0, 0.1) has been synthesized via a chemical route. Structural and microstructural progress has been carried out by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), and cyclic voltammetry (CV) are used to estimate the electrochemical properties of La<sub>0.6</sub>Mo<sub>0.4</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> as an active material with 6 M KOH as the electrolyte for supercapacitors and Lithium-ion Battery Anode. The highest gravimetric capacitance of La<sub>0.6</sub>Mo<sub>0.4</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> (x = 0 and 0.1) materials was determined to be 933.1 and 1143.9 F/g at a 5 mV/s scan rate. The La<sub>0.6</sub>Mo<sub>0.4</sub>Fe<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> electrode's outstanding performance holds much hope for high-performance pseudocapacitors.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"427 ","pages":"Article 116916"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001353","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Only by combining large-scale electrochemical energy with renewable energy sources, like solar or wind power plants, can a green energy ecosystem replace one based on fossil fuel devices for storage. Electrodes for high-capacitive pseudocapacitors could provide high-power output and high-energy storage. Fast, reversible surface faradaic redox reactions are used in electrochemical energy storage, employing pseudocapacitors to produce highly efficient green energy devices cheaply. We describe Ni-doped La0.6Mo0.4FeO3 as an electrode material for supercapacitor and Lithium-ion Battery Anode design. The La0.6Mo0.4Fe1-xNixO3 (x = 0, 0.1) has been synthesized via a chemical route. Structural and microstructural progress has been carried out by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), and cyclic voltammetry (CV) are used to estimate the electrochemical properties of La0.6Mo0.4Fe1-xNixO3 as an active material with 6 M KOH as the electrolyte for supercapacitors and Lithium-ion Battery Anode. The highest gravimetric capacitance of La0.6Mo0.4Fe1-xNixO3 (x = 0 and 0.1) materials was determined to be 933.1 and 1143.9 F/g at a 5 mV/s scan rate. The La0.6Mo0.4Fe1-xNixO3 electrode's outstanding performance holds much hope for high-performance pseudocapacitors.
La0.6Mo0.4Fe1-xNixO3钙钛矿氧化物纳米陶瓷在超级电容器电极和锂离子电池阳极中的电化学性能增强
只有将大规模电化学能源与可再生能源(如太阳能或风力发电厂)相结合,绿色能源生态系统才能取代基于化石燃料设备的储能系统。高容伪电容器电极可以提供高功率输出和高能量存储。快速、可逆的表面法拉第氧化还原反应被用于电化学储能,利用假电容器生产高效、廉价的绿色能源器件。我们描述了ni掺杂La0.6Mo0.4FeO3作为超级电容器和锂离子电池阳极设计的电极材料。用化学方法合成了La0.6Mo0.4Fe1-xNixO3 (x = 0,0.1)。通过x射线衍射(XRD)分析、扫描电子显微镜和透射电子显微镜(TEM)对材料的结构和微观结构进行了研究。采用电化学阻抗谱(EIS)、恒流充放电(GCD)和循环伏安法(CV)对La0.6Mo0.4Fe1-xNixO3作为活性材料,以6M KOH作为超级电容器和锂离子电池阳极的电解液进行了电化学性能评价。在5 mV/s扫描速率下,La0.6Mo0.4Fe1-xNixO3 (x = 0和0.1)材料的最高重量电容分别为933.1和1143.9 F/g。La0.6Mo0.4Fe1-xNixO3电极的优异性能为高性能伪电容器带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信