C.J. Vijaykumar , Soumya S. Bulla , Chetan Chavan , Rajashekhar F. Bhajantri , K. Sakthipandi
{"title":"一次电池用钠离子导电棉基固态电解质的一步制备","authors":"C.J. Vijaykumar , Soumya S. Bulla , Chetan Chavan , Rajashekhar F. Bhajantri , K. Sakthipandi","doi":"10.1016/j.ssi.2025.116897","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries and liquid electrolyte-based energy storage systems face intrinsic limitations that necessitate alternative solutions. Sodium-ion batteries with solid-state electrolytes, particularly biopolymer electrolytes, have emerged as promising candidates for sustainable battery technologies. This study developed a biopolymer electrolyte using cotton cellulose and explored its structural, dielectric, and transport properties upon doping with sodium nitrate (<span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>) salt and bismuth oxide (<span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span>) nanoparticles (NPs). Three samples, pristine cotton (PC), <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>-doped cotton (PCS), and <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span> with <span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span> NPs-doped cotton (PCSN) were prepared using a polymer adsorption palletization technique. XRD, FTIR, and SEM with EDX confirmed successful doping, revealing changes in crystallinity, chemical interactions, and microstructural modifications respectively. The impedance spectroscopy and dielectric studies showed insulating behaviour for pristine cotton, while <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>-doped cotton and <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span> with <span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span> NPs-doped cotton exhibited ionic conductivities of <span><math><mn>1.71</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>S</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mn>3</mn><mo>.</mo><mn>81</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mspace></mspace><mi>S</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> respectively. PCS-based cells demonstrated superior performance with open circuit voltage of <span><math><mn>2.2</mn><mspace></mspace><mi>V</mi></math></span>, current density of <span><math><mn>3.55</mn><mspace></mspace><mi>μA</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>, power density of <span><math><mn>0.29</mn><mspace></mspace><mi>W</mi><msup><mi>Kg</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, energy density of <span><math><mn>7.09</mn><mspace></mspace><mi>Wh</mi><msup><mi>Kg</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and discharge capacity of <span><math><mn>2.32</mn><mspace></mspace><mi>μA</mi><msup><mi>h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"427 ","pages":"Article 116897"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step fabrication of sodium-ion conducting cotton-based solid-state electrolyte for primary battery applications\",\"authors\":\"C.J. Vijaykumar , Soumya S. Bulla , Chetan Chavan , Rajashekhar F. Bhajantri , K. Sakthipandi\",\"doi\":\"10.1016/j.ssi.2025.116897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries and liquid electrolyte-based energy storage systems face intrinsic limitations that necessitate alternative solutions. Sodium-ion batteries with solid-state electrolytes, particularly biopolymer electrolytes, have emerged as promising candidates for sustainable battery technologies. This study developed a biopolymer electrolyte using cotton cellulose and explored its structural, dielectric, and transport properties upon doping with sodium nitrate (<span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>) salt and bismuth oxide (<span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span>) nanoparticles (NPs). Three samples, pristine cotton (PC), <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>-doped cotton (PCS), and <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span> with <span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span> NPs-doped cotton (PCSN) were prepared using a polymer adsorption palletization technique. XRD, FTIR, and SEM with EDX confirmed successful doping, revealing changes in crystallinity, chemical interactions, and microstructural modifications respectively. The impedance spectroscopy and dielectric studies showed insulating behaviour for pristine cotton, while <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span>-doped cotton and <span><math><mi>NaN</mi><msub><mi>O</mi><mn>3</mn></msub></math></span> with <span><math><mi>B</mi><msub><mi>i</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></math></span> NPs-doped cotton exhibited ionic conductivities of <span><math><mn>1.71</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>S</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mn>3</mn><mo>.</mo><mn>81</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mspace></mspace><mi>S</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> respectively. PCS-based cells demonstrated superior performance with open circuit voltage of <span><math><mn>2.2</mn><mspace></mspace><mi>V</mi></math></span>, current density of <span><math><mn>3.55</mn><mspace></mspace><mi>μA</mi><msup><mi>cm</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>, power density of <span><math><mn>0.29</mn><mspace></mspace><mi>W</mi><msup><mi>Kg</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, energy density of <span><math><mn>7.09</mn><mspace></mspace><mi>Wh</mi><msup><mi>Kg</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and discharge capacity of <span><math><mn>2.32</mn><mspace></mspace><mi>μA</mi><msup><mi>h</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"427 \",\"pages\":\"Article 116897\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382500116X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382500116X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
One-step fabrication of sodium-ion conducting cotton-based solid-state electrolyte for primary battery applications
Lithium-ion batteries and liquid electrolyte-based energy storage systems face intrinsic limitations that necessitate alternative solutions. Sodium-ion batteries with solid-state electrolytes, particularly biopolymer electrolytes, have emerged as promising candidates for sustainable battery technologies. This study developed a biopolymer electrolyte using cotton cellulose and explored its structural, dielectric, and transport properties upon doping with sodium nitrate () salt and bismuth oxide () nanoparticles (NPs). Three samples, pristine cotton (PC), -doped cotton (PCS), and with NPs-doped cotton (PCSN) were prepared using a polymer adsorption palletization technique. XRD, FTIR, and SEM with EDX confirmed successful doping, revealing changes in crystallinity, chemical interactions, and microstructural modifications respectively. The impedance spectroscopy and dielectric studies showed insulating behaviour for pristine cotton, while -doped cotton and with NPs-doped cotton exhibited ionic conductivities of and respectively. PCS-based cells demonstrated superior performance with open circuit voltage of , current density of , power density of , energy density of , and discharge capacity of .
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.