Defect chemistry, ionic and electronic conductivity of an Fe/Ni-substituted La0.49Sr0.31TiO3 exsolution material

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Shu Wang, Jing-Jing Shen, Peter Vang Hendriksen, Bhaskar Reddy Sudireddy
{"title":"Defect chemistry, ionic and electronic conductivity of an Fe/Ni-substituted La0.49Sr0.31TiO3 exsolution material","authors":"Shu Wang,&nbsp;Jing-Jing Shen,&nbsp;Peter Vang Hendriksen,&nbsp;Bhaskar Reddy Sudireddy","doi":"10.1016/j.ssi.2025.116917","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cells offer unrivalled efficiency in energy conversion and can become a key technology for the green transition of the energy system. The state-of-the-art fuel electrode of such cells, a Ni-zirconia composite, suffers from some limitations: poor durability at high polarization, sensitivity to detrimental coke formation, and limited redox stability. Electrodes made from perovskite materials may offer a solution to these challenges; they show a reduced tendency for coke formation and have the potential to enhance stability and performance. To this end, developing perovskite materials with enhanced mixed ionic and electronic conductivity (MIEC) and the capacity to exsolve nanoparticles to boost performance is important. This study introduces a defect chemistry model for a promising “exsolution” material (La<sub>0.49</sub>Sr<sub>0.31</sub>Ti<sub>0.94</sub>Fe<sub>0.03</sub>Ni<sub>0.03</sub>O<sub>3,</sub> LSFNT) and reports on the transport properties of the material. LSFNT retains a stable cubic perovskite structure across a wide oxygen partial pressure range (0.21 to 10<sup>−21</sup> bar) and ex-solves Ni<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub> nanoparticles in pure hydrogen. The conductivity of LSFNT increases with decreasing oxygen partial pressure, displaying an approximate <span><math><msup><msub><mi>pO</mi><mn>2</mn></msub><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span> dependence in the range of 10<sup>−14</sup> to 10<sup>−18</sup> bar. Below this threshold, the <span><math><msub><mi>pO</mi><mn>2</mn></msub></math></span> dependence of the conductivity deviates from this trend due to oxygen vacancy annihilation and Fe/Ni nanoparticle exsolution, consistent with the proposed defect chemistry model. This work also demonstrates the mixed ionic and electronic conductivity in LSFNT. Electron-blocking experiments reveal a high ionic conductivity of LSFNT (0.054 S/cm at 850 °C), which exceeds that of yttria-stabilized zirconia (8YSZ) and is comparable to gadolinium-doped ceria (Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>2</sub>, CGO). Overall, these findings underscore the good stability of LSFNT alongside noteworthy electronic and ionic conductivity, rendering it a strong candidate as a fuel electrode backbone material for solid oxide cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116917"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001365","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cells offer unrivalled efficiency in energy conversion and can become a key technology for the green transition of the energy system. The state-of-the-art fuel electrode of such cells, a Ni-zirconia composite, suffers from some limitations: poor durability at high polarization, sensitivity to detrimental coke formation, and limited redox stability. Electrodes made from perovskite materials may offer a solution to these challenges; they show a reduced tendency for coke formation and have the potential to enhance stability and performance. To this end, developing perovskite materials with enhanced mixed ionic and electronic conductivity (MIEC) and the capacity to exsolve nanoparticles to boost performance is important. This study introduces a defect chemistry model for a promising “exsolution” material (La0.49Sr0.31Ti0.94Fe0.03Ni0.03O3, LSFNT) and reports on the transport properties of the material. LSFNT retains a stable cubic perovskite structure across a wide oxygen partial pressure range (0.21 to 10−21 bar) and ex-solves Ni1-xFex nanoparticles in pure hydrogen. The conductivity of LSFNT increases with decreasing oxygen partial pressure, displaying an approximate pO21/6 dependence in the range of 10−14 to 10−18 bar. Below this threshold, the pO2 dependence of the conductivity deviates from this trend due to oxygen vacancy annihilation and Fe/Ni nanoparticle exsolution, consistent with the proposed defect chemistry model. This work also demonstrates the mixed ionic and electronic conductivity in LSFNT. Electron-blocking experiments reveal a high ionic conductivity of LSFNT (0.054 S/cm at 850 °C), which exceeds that of yttria-stabilized zirconia (8YSZ) and is comparable to gadolinium-doped ceria (Ce0.9Gd0.1O2, CGO). Overall, these findings underscore the good stability of LSFNT alongside noteworthy electronic and ionic conductivity, rendering it a strong candidate as a fuel electrode backbone material for solid oxide cells.
Fe/ ni取代La0.49Sr0.31TiO3外溶材料的缺陷化学、离子电导率和电子电导率
固体氧化物电池在能量转换方面提供了无与伦比的效率,可以成为能源系统绿色转型的关键技术。这种电池的最先进的燃料电极是一种镍锆复合材料,它有一些局限性:在高极化下耐久性差,对有害焦炭形成敏感,氧化还原稳定性有限。由钙钛矿材料制成的电极可能为这些挑战提供解决方案;它们显示出减少焦炭形成的趋势,并具有提高稳定性和性能的潜力。为此,开发具有增强混合离子和电子导电性(MIEC)和溶解纳米颗粒能力的钙钛矿材料以提高性能是很重要的。本文介绍了一种很有前途的“出溶”材料(la0.49 sr0.31 ti0.94 fe0.03 ni0.030 o3, LSFNT)的缺陷化学模型,并报道了该材料的输运性质。在较宽的氧分压范围内(0.21 ~ 10−21 bar), LSFNT保持了稳定的立方钙钛矿结构,并在纯氢中脱溶了Ni1-xFex纳米颗粒。LSFNT的电导率随氧分压的降低而增加,在10−14 ~ 10−18 bar范围内呈现近似于pO2−1/6的依赖关系。在此阈值以下,由于氧空位湮灭和Fe/Ni纳米颗粒析出,电导率对pO2的依赖偏离了这一趋势,与所提出的缺陷化学模型一致。这项工作还证明了LSFNT的混合离子和电子导电性。电子阻滞实验表明,LSFNT具有较高的离子电导率(850℃时为0.054 S/cm),超过了钇稳定氧化锆(8YSZ),与掺钆的二氧化铈(Ce0.9Gd0.1O2, CGO)相当。总的来说,这些发现强调了LSFNT良好的稳定性以及值得注意的电子和离子导电性,使其成为固体氧化物电池燃料电极骨干材料的有力候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信