{"title":"Synergy-electrode based on micron-sized LiNi0.5Mn0.3Co0.2O2/LiFePO4 particles with bimodal size distribution","authors":"Oncu Akyildiz , Ezgi Yılmaz","doi":"10.1016/j.ssi.2025.117000","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the electrochemical behavior of binary blend cathodes made by mixing micro-spheres of LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub> and smaller micro-platelets of LiFePO<sub>4</sub> in different proportions (10–40 wt%). Results show that the discharge profiles of the blended electrodes at 0.1C are predictable through a model based on the weighted averages of specific differential capacities of pristine electrodes. However, at high C-rates (>1C), the blended electrode contains 20 wt% LiFePO<sub>4</sub> (coined as the synergy-electrode) shows significantly higher discharge capacity and better capacity retention (observed up to the 100th cycle) than other electrodes. The synergy is rationalized using cyclic voltammetry and electrochemical impedance spectroscopy, indicating the facilitation of the charge-discharge reactions, reduction of both the bulk and the charge-transfer resistances, and higher Li diffusion coefficients observed for the synergy-electrode.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 117000"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382500219X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the electrochemical behavior of binary blend cathodes made by mixing micro-spheres of LiNi0.5Mn0.3Co0.2O2 and smaller micro-platelets of LiFePO4 in different proportions (10–40 wt%). Results show that the discharge profiles of the blended electrodes at 0.1C are predictable through a model based on the weighted averages of specific differential capacities of pristine electrodes. However, at high C-rates (>1C), the blended electrode contains 20 wt% LiFePO4 (coined as the synergy-electrode) shows significantly higher discharge capacity and better capacity retention (observed up to the 100th cycle) than other electrodes. The synergy is rationalized using cyclic voltammetry and electrochemical impedance spectroscopy, indicating the facilitation of the charge-discharge reactions, reduction of both the bulk and the charge-transfer resistances, and higher Li diffusion coefficients observed for the synergy-electrode.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.