Transient-state methods to determine all the mass/charge transport properties of a material

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Han-Ill Yoo
{"title":"Transient-state methods to determine all the mass/charge transport properties of a material","authors":"Han-Ill Yoo","doi":"10.1016/j.ssi.2025.116998","DOIUrl":null,"url":null,"abstract":"<div><div>All the mass/charge transport properties of a material with, e.g., single-type ions (i) and electrons (e) as mobile charged components may be documented exhaustively and succinctly in terms of a coupling coefficient matrix L of the Onsagerian causality as</div><div><span><math><mfenced><mtable><mtr><mtd><msub><mi>J</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><msub><mi>J</mi><mi>e</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>ii</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ie</mi></msub></mtd><mtd><msub><mi>L</mi><mi>iT</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>ei</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ee</mi></msub></mtd><mtd><msub><mi>L</mi><mi>eT</mi></msub></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><mo>−</mo><mo>∇</mo><msub><mi>η</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mo>−</mo><mo>∇</mo><msub><mi>η</mi><mi>e</mi></msub></mtd></mtr><mtr><mtd><mo>−</mo><mo>∇</mo><mi>T</mi></mtd></mtr></mtable></mfenced></math></span>,</div><div>where J<sub>k</sub> and η<sub>k</sub> stand for the flux and electrochemical potential, respectively, of the mobile charged-component k(=i,e), and T the absolute temperature. Due to the Onsager reciprocity and the L-matrix transformation rule,</div><div><span><math><msub><mi>L</mi><mi>ie</mi></msub><mo>=</mo><msub><mi>L</mi><mi>ei</mi></msub><mo>;</mo><mspace></mspace><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>iT</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>eT</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>L</mi><mi>ii</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ie</mi></msub></mtd></mtr><mtr><mtd><msub><mi>L</mi><mi>ei</mi></msub></mtd><mtd><msub><mi>L</mi><mi>ee</mi></msub></mtd></mtr></mtable></mfenced><mfenced><mtable><mtr><mtd><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>i</mi></msub></mtd></mtr><mtr><mtd><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>e</mi></msub></mtd></mtr></mtable></mfenced></math></span>,</div><div>where <span><math><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>k</mi></msub></math></span>is the transported entropy of k, the sum of its partial entropy, <span><math><msub><mover><mi>S</mi><mo>̄</mo></mover><mi>k</mi></msub><mspace></mspace></math></span>and entropy-of-transport, <span><math><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup></math></span> or<span><span><span><math><msub><mover><mover><mi>S</mi><mo>̄</mo></mover><mo>̄</mo></mover><mi>k</mi></msub><mo>≡</mo><msub><mover><mi>S</mi><mo>̄</mo></mover><mi>k</mi></msub><mo>+</mo><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup><mo>;</mo><mspace></mspace><msubsup><mi>S</mi><mi>k</mi><mo>∗</mo></msubsup><mo>≡</mo><mfrac><msubsup><mi>q</mi><mi>k</mi><mo>∗</mo></msubsup><mi>T</mi></mfrac></math></span></span></span></div><div>with <span><math><msubsup><mi>q</mi><mi>k</mi><mo>∗</mo></msubsup></math></span> being the reduced heat-of-transport of k(=i,e). In this paper, we will introduce the transient-state methods to determine, once and for all, all the mass/charge transport properties <span><math><mi>L</mi><mo>=</mo><mfenced><msub><mi>L</mi><mi>ii</mi></msub><msub><mi>L</mi><mi>ie</mi></msub><msub><mi>L</mi><mi>ei</mi></msub><msub><mi>L</mi><mi>ee</mi></msub><msub><mi>L</mi><mi>iT</mi></msub><msub><mi>L</mi><mi>eT</mi></msub></mfenced></math></span>, together with their experimental implementations based on isothermal semi-blocking-induced and nonisothermal temperature-gradient induced chemical polarizations. Finally, we will present a few examples of complete documentation and demonstrate how to retrieve the mass/charge transport properties of interest.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 116998"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002176","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All the mass/charge transport properties of a material with, e.g., single-type ions (i) and electrons (e) as mobile charged components may be documented exhaustively and succinctly in terms of a coupling coefficient matrix L of the Onsagerian causality as
JiJe=LiiLieLiTLeiLeeLeTηiηeT,
where Jk and ηk stand for the flux and electrochemical potential, respectively, of the mobile charged-component k(=i,e), and T the absolute temperature. Due to the Onsager reciprocity and the L-matrix transformation rule,
Lie=Lei;LiTLeT=LiiLieLeiLeeS̄̄iS̄̄e,
where S̄̄kis the transported entropy of k, the sum of its partial entropy, S̄kand entropy-of-transport, Sk orS̄̄kS̄k+Sk;SkqkT
with qk being the reduced heat-of-transport of k(=i,e). In this paper, we will introduce the transient-state methods to determine, once and for all, all the mass/charge transport properties L=LiiLieLeiLeeLiTLeT, together with their experimental implementations based on isothermal semi-blocking-induced and nonisothermal temperature-gradient induced chemical polarizations. Finally, we will present a few examples of complete documentation and demonstrate how to retrieve the mass/charge transport properties of interest.
瞬态方法,以确定所有的质量/电荷传输性质的材料
例如,单一类型离子(i)和电子(e)作为可移动带电组分的材料的所有质量/电荷输运性质可以用Onsagerian因果关系的耦合系数矩阵L详尽而简洁地记录为jije =LiiLieLiTLeiLeeLeT -∇ηi -∇ηe -∇T,其中Jk和ηk分别代表可移动带电组分k(=i,e)的通量和电化学势,T代表绝对温度。根据Onsager互易性和l -矩阵变换规则,Lie=Lei;LiTLeT=LiiLieLeiLeeS的传输熵,其中S是k的部分熵和传输熵,Sk * orS * k≡S * k+Sk *;Sk∗≡qk∗t,其中qk∗为k(=i,e)的约化输运热。在本文中,我们将介绍瞬态方法来一劳永逸地确定所有的质量/电荷输运性质L=LiiLieLeiLeeLiTLeT,以及基于等温半阻塞诱导和非等温温度梯度诱导化学极化的实验实现。最后,我们将提供一些完整文档的示例,并演示如何检索感兴趣的质量/电荷输运性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信