Homayoun Asadzadeh , Scott Renkes , MinJun Kim , George Alexandrakis
{"title":"Computational and experimental study of AC measurements performed by a double-nanohole plasmonic nanopore sensor on 20 nm silica nanoparticles","authors":"Homayoun Asadzadeh , Scott Renkes , MinJun Kim , George Alexandrakis","doi":"10.1016/j.sbsr.2024.100694","DOIUrl":"10.1016/j.sbsr.2024.100694","url":null,"abstract":"<div><div>A novel method of AC sensing is presented that uses a double nanohole (DNH) nanoaperture atop a solid-state nanopore (ssNP) to trap analytes and measure their optical and electrical properties. In this method analytes are propelled by an external applied voltage towards the sensor until they are trapped at the DNH-ssNP interface via a self-induced back action (SIBA) plasmonic force. We have previously named this method SIBA Actuated Nanopore Electrophoresis (SANE) sensing and have shown its ability to perform concurrent optical and DC electrical measurements. Here, we extend this method to AC sensing of 20 nm SiO<sub>2</sub> (silica) nanoparticles, using voltage modulation over a wide range of frequencies applied on top of a baseline DC bias. The sensor was constructed using two-beam GFIS Focused Ion Beam (FIB) lithography, incorporating Ne FIB to mill the DNH and He FIB to drill a central 30 nm ssNP. We utilized COMSOL Multiphysics simulations to explore the multi-frequency AC current conductance properties of the silica nanoparticles trapped at the SANE sensor. These simulations computed conductance changes and phase shifts induced by the presence of the nanoparticle over an AC frequency range of 20 Hz to 100 kHz. Experimental measurements confirmed the trends seen in the computational data. Additional computational studies were then performed to dissect the underlying mechanisms driving the observed AC measurements. Looking forward, we aim to adapt this technology for probing therapeutic nanoparticles non-invasively, offering a promising tool for enhancing quality control of nanoparticle-mediated drug and gene delivery systems.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100694"},"PeriodicalIF":5.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of plant physiological responses based on leaf color changes through the development and application of a wireless plant sensor","authors":"Kaori Kohzuma , Ko-ichiro Miyamoto","doi":"10.1016/j.sbsr.2024.100688","DOIUrl":"10.1016/j.sbsr.2024.100688","url":null,"abstract":"<div><div>Optical sensing has been used to monitor the physiological responses of plants noninvasively and in real-time. In this study, we developed a low-cost plant sensor that performed a spectroscopic measurement at eight wavelengths in the visible region. The sensor head of the system was attached directly to the underside of the leaf, not blocking the light, and eliminating correction work because of the constant distance between the sensor head and the sample. The collected data was shared in the cloud via a network, thereby enabling remote monitoring. The characteristics of the plant sensor as a spectral photometer were validated, with major wavelengths also showing good correlations with those of a conventional spectrometer. The reflectance of 620 nm in this sensor detected plant aging indicator chlorophyll, and 550 nm detected stress indicator xanthophyll. In the field test, these plant physiological responses, seasonal leaf color changes and environmental stresses, were observed remotely. The results indicate that the novel spectroscopic measurement from the underside of the leaf is effective to realize accurate and stable measurement of the plant leaf. The plant sensor can be a powerful tool in the field of agriculture and ecological study by realizing simultaneous, multi-point and remote monitoring at a low cost.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100688"},"PeriodicalIF":5.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000709/pdfft?md5=9d2170e85d28f97340ed25ee2d90d415&pid=1-s2.0-S2214180424000709-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmood D. Aljabri , Salah M. El-Bahy , Refat El-Sayed , Khaled F. Debbabi , Alaa S. Amin , Naglaa M. Mohamed
{"title":"An innovative eco-friendly optical sensor designed specifically to detect gallium ions in environmental samples","authors":"Mahmood D. Aljabri , Salah M. El-Bahy , Refat El-Sayed , Khaled F. Debbabi , Alaa S. Amin , Naglaa M. Mohamed","doi":"10.1016/j.sbsr.2024.100687","DOIUrl":"10.1016/j.sbsr.2024.100687","url":null,"abstract":"<div><div>A novel membrane optical sensor with high selectivity and sensitivity was developed for detecting ultra-low concentrations of gallium (Ga<sup>3+</sup>) ions. This sensor utilized a newly synthesized compound, 4,4′-1,3-pHenylene bis(azanylyli-dene) bis(methanylylidene))bis(<em>N</em>,<em>N</em>-dimethylaniline) (PBABMBD), as its ionophore, combined with 9-(diethylamino)-5-(octadecanoylimino)-5H-benzo[a] phenoxazine (ETH-5294) as a chromoionophore within a polyvinyl chloride (PVC) membrane matrix. The impact of various parameters on the fabrication of the optical sensor and its ability to detect Ga<sup>3+</sup> ions was thoroughly examined and fine-tuned for optimization. Demonstrating a broad linear dynamic range from 6.25 × 10<sup>−9</sup> to 3.75 × 10<sup>−6</sup> M, the sensor boasts impressive detection and quantification limits of 1.75 and 6.00 × 10<sup>−9</sup> M Ga<sup>3+</sup> ions, respectively. Furthermore, the sensor demonstrates a swift response time of just 3.0 min and can undergo multiple rejuvenations with 0.25 M HNO<sub>3</sub> solutions. The study examined the impact of potential interfering ions on the detection of Ga<sup>3+</sup>ions. Fortunately, the results showed that the created optical sensor was very selective for Ga<sup>3+</sup> ions and barely reacts with other anions and cations, especially indium (III). Furthermore, the sensor proved effective in accurately detecting Ga<sup>3+</sup> ions across a range of samples, including food, alloys, water, and biological specimens.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100687"},"PeriodicalIF":5.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honghao Zhang , Xi Zhang , Yingjun Si , Hui Li , Jiyang Han , Chuan Yang , Hui Yang
{"title":"Universal strategy for rapid design and analysis of gas detection peptide chips with positional preference","authors":"Honghao Zhang , Xi Zhang , Yingjun Si , Hui Li , Jiyang Han , Chuan Yang , Hui Yang","doi":"10.1016/j.sbsr.2024.100697","DOIUrl":"10.1016/j.sbsr.2024.100697","url":null,"abstract":"<div><p>The design and analysis of gas detection chips directly affect their detection efficiency and applicability. Detection devices are currently restricted by detection principles, facing drawbacks like intricate structural design, limited applicability, and low detection efficiency. We have designed a complete set of design and analysis scheme for a peptide gas detection chip. First, we selected specific and high-affinity peptide combinations from existing peptide-gas affinity datasets. Then, the peptide chip's arrangement was grouped according to the variations in peptides' affinity towards different gases. Peptides were arranged based on their affinity levels within each group, striking a balance between discrimination and flexibility in the design of the chip. Finally, we evaluated the analysis methods by generating simulated data based on a reference affinity matrix constructed from actual data. Due to the preprocessing role of chip design on affinity data, all methods can effectively accomplish gas classification. In gas concentration prediction tasks, our method reduced mean square error to 0.41, significantly outperforming other methods. This gas detection scheme shortens the development cycle of chip design and analysis methods, fully utilizing the specificity of peptides, enhancing gas analysis effectiveness, and demonstrating the agile development of gas detection chips.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100697"},"PeriodicalIF":5.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000795/pdfft?md5=6be00bfaca83ebb566970c279bc5c166&pid=1-s2.0-S2214180424000795-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sediment microbial fuel cells capable of powering outdoor environmental monitoring sensors","authors":"Yolina Hubenova , Ivo Bardarov , Eleonora Hubenova , Evelina Slavcheva","doi":"10.1016/j.sbsr.2024.100695","DOIUrl":"10.1016/j.sbsr.2024.100695","url":null,"abstract":"<div><p>In this study, Sediment Microbial Fuel Cells (SMFCs) prototypes have been developed to operate under open-air conditions and power sensors for environmental monitoring. Two SMFCs with a volume of 50 l each, consisting of two types of anodic materials – graphite and coke, were operated on-field for over a year. The electrical outputs have been recorded and compared with the measured environmental parameters such as temperature, light illumination, atmospheric pressure, humidity, etc. The statistical analysis of the obtained data shows that temperature changes between 0 and 14 °C do not affect the power achieved. On the contrary, the sunlight irradiation showed a second-order polynomial correlation with the current generated by the SMFCs, increasing the latter during the days. The cathode reactions significantly impacted the power density achieved by both explored SMFCs and the system's sustainability. The metallurgical coke is suggested to be used as an inexpensive and convenient anode material for SMFCs giving compatible results to the widely used graphite.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100695"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000771/pdfft?md5=3a17b815f27cdcfc792216ddf48478e1&pid=1-s2.0-S2214180424000771-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhensheng Ma , Yue Hu , Lina Wang , Mimi Li , Chenghong Li , Lulu Li , Hui Huang , Lichao Fang , Xiaolong Wang , Huamin Liu , Junsong Zheng
{"title":"Recent advances in biosensors for analysis of DNA/RNA methylation","authors":"Zhensheng Ma , Yue Hu , Lina Wang , Mimi Li , Chenghong Li , Lulu Li , Hui Huang , Lichao Fang , Xiaolong Wang , Huamin Liu , Junsong Zheng","doi":"10.1016/j.sbsr.2024.100690","DOIUrl":"10.1016/j.sbsr.2024.100690","url":null,"abstract":"<div><div>DNA and RNA methylation are essential epigenetic modifications that play a pivotal role in various physiological processes by modulating gene expression at the post-transcriptional level. Abnormal DNA/RNA methylation is closely linked to a range of human diseases, including cancer and neurological disorders. Therefore, the accurate and sensitive detection of DNA/RNA methylation is of great importance in both epigenetic biology research and disease diagnosis. Technological advancements have led to the comprehensive development of methylation detection methods. Among these, electrochemical techniques have garnered significant attention owing to their simplicity and effectiveness in detection. This review provides an overview of methylation detection technologies based on electrochemical principles developed over the past five years, including electrochemical, photoelectrochemical, electrochemiluminescence, and fluorescence methodologies. Additionally, it discusses the advantages and disadvantages of these approaches, challenges and advancements in methylation detection.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100690"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000722/pdfft?md5=013c91cfee8b15ef060b7e5f97b61ae8&pid=1-s2.0-S2214180424000722-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhan Zhang , Shixi Zhang , Huiyi Wang , Mathias Charconnet , Jiaye Jiang , Yuan Peng , Lei Zhang , Charles H. Lawrie
{"title":"Optical biosensor based on the dual-functional gold nanoparticles for rapid and accurate multiplex detection of influenza A and B viruses","authors":"Yuhan Zhang , Shixi Zhang , Huiyi Wang , Mathias Charconnet , Jiaye Jiang , Yuan Peng , Lei Zhang , Charles H. Lawrie","doi":"10.1016/j.sbsr.2024.100689","DOIUrl":"10.1016/j.sbsr.2024.100689","url":null,"abstract":"<div><p>Due to the global pandemic of influenza and related respiratory diseases, rapid and accurate detection is in high demand to control virus spread and facilitate early treatment. However, most current molecular detection methods either require long turnaround times, suffer from low sensitivity and/or can only detect single pathogens. To overcome these challenges, we constructed a novel colorimetric gold nanoparticle (AuNPs) biosensor containing functionalized probes to detect multiple targets simultaneously. Utilizing the salt aging method, AuNPs were functionalized by the designed oligonucleotides to fabricate biosensors. This biosensor can show visible color change within 20 min, and could minimally detect the target influenza viruses at 10 nM. This detection technique presents high sensitivity in a short time, meanwhile identifying two different influenza viruses simultaneously. It opens a window to a multiplex-in-one strategy for a clinical viral diagnostic.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100689"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000710/pdfft?md5=864f9623a0c5976f614318c306195d1c&pid=1-s2.0-S2214180424000710-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordi Hernández-Contreras , Jordi Roig-Rubio , Margarita Parra , Salvador Gil , Pau Arroyo , José A. Sáez , Carlos Lodeiro , Pablo Gaviña
{"title":"Green and real-time detection of GHB in soft drinks and alcoholic beverages using an eco-friendly cellulose paper-based fluorescent probe","authors":"Jordi Hernández-Contreras , Jordi Roig-Rubio , Margarita Parra , Salvador Gil , Pau Arroyo , José A. Sáez , Carlos Lodeiro , Pablo Gaviña","doi":"10.1016/j.sbsr.2024.100691","DOIUrl":"10.1016/j.sbsr.2024.100691","url":null,"abstract":"<div><p>Chemical submission, a nefarious tactic increasingly employed in criminal activities, has spurred urgent calls for innovative countermeasures. GHB, often dubbed “liquid ecstasy,” stands out as a favoured agent for its surreptitious nature and seamless solubility in water and alcoholic beverages. Addressing this menace head-on, a groundbreaking study delves into the development of advanced chemosensors, leveraging 2-aminonaphtoxazole- and benzoxazole-based compounds adorned with fluorescein, to construct a cellulose paper-based detection system. This ingenious setup not only detects GHB in water but extends its vigilance to real alcoholic and non-alcoholic beverages, illuminating a pathway to thwart potential assailants. With a fluorescence enhancement mechanism at play, the system boasts a dynamic range from 0 to 125 mM GHB in water, exhibiting a commendable limit of detection (LOD) at 7.3 mM. Crucially, its eco-friendly nature, devoid of solvent residuals, underscores its suitability as a proactive shield against chemical submission, embodying a beacon of hope in the fight against such insidious threats to public safety.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100691"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000734/pdfft?md5=e389b99fa02c13e205c630790ec87504&pid=1-s2.0-S2214180424000734-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic nanoparticles and quantum dots coupled immuno nano fluorescence assay for visual detection of HPV16-induced cervical cancer cells from cytology/biopsy samples","authors":"Srishty Raman , Pranay Tanwar , Jyoti Meena , Neerja Bhatla , Subhash C. Yadav","doi":"10.1016/j.sbsr.2024.100693","DOIUrl":"10.1016/j.sbsr.2024.100693","url":null,"abstract":"<div><p>Biopsy-based histopathology and immunohistochemistry for cervical cancer detection are costly, time-consuming, and require expert personnel for data interpretation. We developed a simple magnetic nanoparticle (MNPs) and quantum dots (QD) coupled immuno nano fluorescence assay (MNPQDCINFA) for visual detection of HPV16-induced cervical cancer cells under UV light from cytology/biopsy samples exploiting host cancer cells expressing viral E7 protein as a biomarker. The E7 domain-specific polyclonal antibodies were generated against the 1–44 amino acid N-terminal (anti-domainN antibody) and 48–98 amino acid C-terminal domain (anti-domainC antibody). These antibodies were bioconjugated with nonfluorescent MNPs (60 % efficiency) and fluorescent QDs (66 % efficiency) to generate capturing (MNPs-anti-domainN antibody) and detecting (QDs-anti-domainC antibody) nano-complex, respectively. Assay conditions, such as concentration of capturing (20 μM) and detecting (50 nM) antibody nano-complexes and incubation duration (30 min), were standardized. The analytical sensitivity using pure HPV16 E7 protein was recorded up to 200 ng with very high specificity to differentiate from other HPV strains E7 proteins. The diagnostic performance characteristics with cytology samples showed 100 % sensitivity and specificity compared to immunofluorescence and biopsy-based histopathology analysis. The present invention can be effectively used for a quick, disposable, rapid cervical cancer cell detection system as an alternate test for immunofluorescence and histopathology.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100693"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000758/pdfft?md5=74149227605c0a3b27f9a96f66efbae5&pid=1-s2.0-S2214180424000758-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mansour Rezapour Gatabi , Seyed Saleh Ghoreishi Amiri , Reza Yousefi , Hadi Dehbovid , Amard Afzalian
{"title":"CO2 sensing via periodic Array of graphene disks","authors":"Mansour Rezapour Gatabi , Seyed Saleh Ghoreishi Amiri , Reza Yousefi , Hadi Dehbovid , Amard Afzalian","doi":"10.1016/j.sbsr.2024.100696","DOIUrl":"10.1016/j.sbsr.2024.100696","url":null,"abstract":"<div><div>This work aims to introduce a gas detection structure based on stacked layers of graphene-spacer-metal. The presented structure consists of three stacked layers. The first layer is the periodic arrays of graphene disks on top of a typical dielectric such as TOPAS or KAPTON with a known refractive index. Then the second layer provides an air gap opening room for a sample environment. Finally, the third layer includes the dielectric and a continuous graphene sheet. All the exploited elements are modeled by circuit element while the equivalent impedance of the whole structure is calculated. The impedance matching concept is also exploited to obtain absorption power based on the calculated impedance. Additionally, full-wave simulation is performed to investigate the circuit modeling accuracy. Achieving a perfect match for absorption versus frequency verifies the developed method's robustness. Furthermore, comprehensive and ample simulation results are reported to highlight the sensitivity and reliability of the proposed gas detector.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100696"},"PeriodicalIF":5.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}