I. Paun, F. Pirvu, V. Iancu, M. Niculescu, L. Pascu, F. Chiriac
{"title":"An Initial Survey on Occurrence, Fate, and Environmental Risk Assessment of Organophosphate Flame Retardants in Romanian Waterways","authors":"I. Paun, F. Pirvu, V. Iancu, M. Niculescu, L. Pascu, F. Chiriac","doi":"10.3390/jox14010003","DOIUrl":"https://doi.org/10.3390/jox14010003","url":null,"abstract":"Organophosphate ester flame retardants (OPFRs) are ubiquitous organic pollutants in the environment and present an important preoccupation due to their potential toxicity to humans and biota. They can be found in various sources, including consumer products, building materials, transportation industry, electronic devices, textiles and clothing, and recycling and waste management. This paper presents the first survey of its kind in Romania, investigating the composition, distribution, possible sources, and environmental risks of OPFRs in five wastewater treatment plants (WWTPs) and the rivers receiving their effluents. Samples from WWTPs and surface waters were collected and subjected to extraction processes to determine the OPFRs using liquid chromatography with mass spectrometric detection. All the target OPFRs were found in all the matrices, with the average concentrations ranging from 0.6 to 1422 ng/L in wastewater, 0.88 to 1851 ng/g dry weight (d.w.) in sewage sludge, and 0.73 to 1036 ng/L in surface waters. The dominant compound in all the cases was tri(2-chloroisopropyl) phosphate (TCPP). This study observed that the wastewater treatment process was inefficient, with removal efficiencies below 50% for all five WWTPs. The environmental risk assessment indicated that almost all the targeted OPFRs pose a low risk, while TDCPP, TCPP, and TMPP could pose a moderate risk to certain aquatic species. These findings provide valuable information for international pollution research and enable the development of pollution control strategies.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"55 13","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Líbalová, T. Zavodna, F. Elzeinová, H. Barosova, T. Cervena, A. Milcová, Jolana Vankova, Foteini Paradeisi, M. Vojtíšek-Lom, J. Sikorová, J. Topinka, P. Rossner
{"title":"The Genotoxicity of Organic Extracts from Particulate Emissions Produced by Neat Gasoline (E0) and a Gasoline–Ethanol Blend (E15) in BEAS-2B Cells","authors":"H. Líbalová, T. Zavodna, F. Elzeinová, H. Barosova, T. Cervena, A. Milcová, Jolana Vankova, Foteini Paradeisi, M. Vojtíšek-Lom, J. Sikorová, J. Topinka, P. Rossner","doi":"10.3390/jox14010001","DOIUrl":"https://doi.org/10.3390/jox14010001","url":null,"abstract":"Emissions from modern gasoline engines represent an environmental and health risk. In this study, we aimed to compare the toxicity of organic compound mixtures extracted from particulate matter (PM extracts) produced by neat gasoline (E0) and a blend containing 15% ethanol (E15), which is offered as an alternative to non-renewable fossil fuels. Human lung BEAS-2B cells were exposed to PM extracts, and biomarkers of genotoxicity, such as DNA damage evaluated by comet assay, micronuclei formation, levels of phosphorylated histone H2AX, the expression of genes relevant to the DNA damage response, and exposure to polycyclic aromatic hydrocarbons (PAHs), were determined. Results showed that both PM extracts significantly increased the level of oxidized DNA lesions. The E0 extract exhibited a more pronounced effect, possibly due to the higher content of nitrated PAHs. Other endpoints were not substantially affected by any of the PM extracts. Gene expression analysis revealed mild but coordinated induction of genes related to DNA damage response, and a strong induction of PAH-inducible genes, indicating activation of the aryl hydrocarbon receptor (AhR). Our data suggest that the addition of ethanol into the gasoline diminished the oxidative DNA damage, but no effect on other genotoxicity biomarkers was observed. Activated AhR may play an important role in the toxicity of gasoline PM emissions.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"47 24","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Chrz, M. Dvořáková, K. Kejlová, D. Očadlíková, L. Svobodová, L. Malina, B. Hošíková, D. Jírová, H. Bendová, Hana Kolářová
{"title":"The Potential for Genotoxicity, Mutagenicity and Endocrine Disruption in Triclosan and Triclocarban Assessed through a Combination of In Vitro Methods","authors":"J. Chrz, M. Dvořáková, K. Kejlová, D. Očadlíková, L. Svobodová, L. Malina, B. Hošíková, D. Jírová, H. Bendová, Hana Kolářová","doi":"10.3390/jox14010002","DOIUrl":"https://doi.org/10.3390/jox14010002","url":null,"abstract":"Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPF™ Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 µg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 µg/mL for Triclosan, at 2.5, 5, and 10 µg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"52 6","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Gagné, Eva Roubeau-Dumont, C. André, J. Auclair
{"title":"Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area","authors":"François Gagné, Eva Roubeau-Dumont, C. André, J. Auclair","doi":"10.3390/jox13040048","DOIUrl":"https://doi.org/10.3390/jox13040048","url":null,"abstract":"Plastic-based contamination has become a major cause of concern as it pervades many environments such as air, water, sediments, and soils. This study sought to examine the presence of microplastics (MPs) and nanoplastics (NPs) in freshwater mussels placed at rainfall/street runoff overflows, downstream (15 km) of the city centre of Montréal, and 8 km downstream of a municipal effluent dispersion plume. MPs and NPs were determined using flow cytometry and size exclusion chromatography using fluorescence detection. Following 3 months of exposure during the summer season, mussels contained elevated amounts of both MPs and NPs. The rainfall overflow and downstream of the city centre were the most contaminated sites. Lipid peroxidation, metallothioneins, and protein aggregates (amyloids) were significantly increased at the most contaminated sites and were significantly correlated with NPs in tissues. Based on the levels of MPs and NPs in mussels exposed to municipal effluent, wastewater treatment plants appear to mitigate plastic contamination albeit not completely. In conclusion, the data support the hypothesis that mussels placed in urbanized areas are more contaminated by plastics, which are associated with oxidative damage. The highest responses observed at the overflow site suggest that tire wear and/or asphalt (road) erosion MPs/NPs represent important sources of contamination for the aquatic biota.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"93 19","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases","authors":"Jeong-Hun Kang, Daisuke Asai, R. Toita","doi":"10.3390/jox13040049","DOIUrl":"https://doi.org/10.3390/jox13040049","url":null,"abstract":"Bisphenol A (BPA; 4,4′-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"118 26","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138599388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety?","authors":"David Gendron, G. Bubak","doi":"10.3390/jox13040047","DOIUrl":"https://doi.org/10.3390/jox13040047","url":null,"abstract":"Carbon nanotubes and graphene are two types of nanomaterials that have unique properties and potential applications in various fields, including biomedicine, energy storage, and gas sensing. However, there is still a debate about the safety of these materials, and there is yet to be a complete consensus on their potential risks to human health and the environment. While some studies have provided recommendations for occupational exposure limits, more research is needed to fully understand the potential risks of these materials to human health and the environment. In this review, we will try to summarize the advantages and disadvantages of using carbon nanotubes and graphene as well as composites containing them in the context of their biocompatibility and toxicity to living systems. In addition, we overview current policy guidelines and technical regulations regarding the safety of carbon-based nanomaterials.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":" 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138617607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ecotoxicological Evaluation of Bisphenol A and Alternatives: A Comprehensive In Silico Modelling Approach.","authors":"Liadys Mora Lagares, Marjan Vračko","doi":"10.3390/jox13040046","DOIUrl":"10.3390/jox13040046","url":null,"abstract":"<p><p>Bisphenol A (BPA), a compound widely used in industrial applications, has raised concerns due to its environmental impact. As a key component in the manufacture of polycarbonate plastics and epoxy resins used in many consumer products, concerns about potential harm to human health and the environment are unavoidable. This study seeks to address these concerns by evaluating a range of potential BPA alternatives, focusing on their ecotoxicological properties. The research examines 76 bisphenols, including BPA derivatives, using a variety of in silico ecotoxicological models, although it should be noted that these models were not developed exclusively for this particular class of compounds. Consequently, interpretations should be made with caution. The results of this study highlight specific compounds of potential environmental concern and underscore the need to develop more specific models for BPA alternatives that will allow for more accurate and reliable assessment.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"13 4","pages":"719-739"},"PeriodicalIF":6.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138832114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raymond F. Palmer, Tania T. Dempsey, Lawrence B. Afrin
{"title":"Chemical Intolerance and Mast Cell Activation: A Suspicious Synchronicity","authors":"Raymond F. Palmer, Tania T. Dempsey, Lawrence B. Afrin","doi":"10.3390/jox13040045","DOIUrl":"https://doi.org/10.3390/jox13040045","url":null,"abstract":"Background: Chemical Intolerance (CI) is characterized by intolerances for chemicals, foods, and drugs with multi-system symptoms. As yet, the biomechanism remains unclear. One study reported converging lines of evidence supporting a substantive association between mast cell activation syndrome (MCAS) and CI. The purpose of this study is to (1) confirm a previous report demonstrating that 60% of MCAS patients report CI and (2) examine the parallels between symptoms and intolerances in CI and MCAS. Methods: Five hundred forty-four MCAS patients were assigned a clinical MCAS score using a validated assessment instrument and were assessed for CI using the validated Quick Environmental Exposure Sensitivity Index. Results: Our outcomes confirm the previously published study where the majority of MCAS patients also have CI. There was a clear overlap between various ICD-10 diagnostic categories and CI symptoms, providing further support for a potential shared mechanism. Conclusions: Exposures to pesticides, volatile organic compounds, combustion products, and mold have previously been reported as initiators of CI. However, until recently, little was known about the biological mechanism involved that could explain the multisystem symptoms associated with CI. This paper addresses a newly identified biomechanism for disease, which may underlie a host of “medically unexplained symptoms” triggered by xenobiotics.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"24 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition","authors":"Jitendra Kumar Suthar, Balaji Rakesh, Anuradha Vaidya, Selvan Ravindran","doi":"10.3390/jox13040043","DOIUrl":"https://doi.org/10.3390/jox13040043","url":null,"abstract":"Titanium oxide nanoparticles can penetrate the blood–brain barrier, infiltrate the central nervous system, and induce neurotoxicity. One of the most often utilized nanoparticles has been investigated for their neurotoxicity in many studies. Nonetheless, there remains an unexplored aspect regarding the comparative analysis of particles varying in size and nanoparticles of identical dimensions, both with and devoid of surface coating. In the current study, we synthesized two differently sized nanoparticles, TiO2-10 (10 nm) and TiO2-22 (22 nm), and nanoparticles of the same size but with a polyvinylpyrrolidone surface coating (TiO2-PVP, 22 nm) and studied their toxic effects on neural PC-12 cells. The results highlighted significant dose- and time-dependent cytotoxicity at concentrations ≥10 μg/mL. The exposure of TiO2 nanoparticles significantly elevated reactive oxygen and nitrogen species levels, IL-6 and TNF-α levels, altered the mitochondrial membrane potential, and enhanced apoptosis-related caspase-3 activity, irrespective of size and surface coating. The interaction of the nanoparticles with acetylcholinesterase enzyme activity was also investigated, and the results revealed a dose-dependent suppression of enzymatic activity. However, the gene expression studies indicated no effect on the expression of all six genes associated with the dopaminergic system upon exposure to 10 μg/mL for any nanoparticle. The results demonstrated no significant difference between the outcomes of TiO2-10 and TiO2-22 NPs. However, the polyvinylpyrrolidone surface coating was able to attenuate the neurotoxic effects. These findings suggest that as the TiO2 nanoparticles get smaller (towards 0 nm), they might promote apoptosis and inflammatory reactions in neural cells via oxidative stress, irrespective of their size.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"56 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mi Zhou, Hirofumi Yanai, Chee Kong Yap, Christina Emmanouil, Hideo Okamura
{"title":"Anthropogenic Microparticles in Sea-Surface Microlayer in Osaka Bay, Japan","authors":"Mi Zhou, Hirofumi Yanai, Chee Kong Yap, Christina Emmanouil, Hideo Okamura","doi":"10.3390/jox13040044","DOIUrl":"https://doi.org/10.3390/jox13040044","url":null,"abstract":"The abundance, distribution, and composition of microparticles (MPs) in the sea-surface microlayer (S-SML, less than 100 μm of sea surface in this experiment) and in bulk water (1 m under the sea surface) were investigated to evaluate the pollution level of MPs in Osaka Bay in Japan. Both seawater fractions were collected at eight sites including ship navigation routes, the coastal area, and the center of Osaka Bay for 2021–2023. MPs were filtered for four size ranges (10–53, 53–125, 125–500, and >500 μm) and then digested with H2O2. MPs’ abundance was microscopically assessed; and polymer types of MPs were identified by a Fourier transform infrared spectrometer (FTIR). For the 22 collections performed along eight sites, the average MPs’ abundance was 903 ± 921 items/kg for S-SML, while for the 25 collections performed along the same sites, the average MPs’ abundance was 55.9 ± 40.4 items/kg for bulk water, respectively. MPs in both S-SML and bulk water exhibited their highest abundance along the navigation routes. The smallest MPs (10–53 μm) accounted for 81.2% and for 62.2% of all MPs in S-SML and in bulk water among all sites, respectively. Polymethyl methacrylate (PMMA) was the major type of MPs identified while minor ones were polyethylene, polyesters, polystyrene, polypropylene, polyvinyl chloride, polyamide, etc. PMMA comprised 95.1% of total MPs in S-SML and 45.6% of total MPs in bulk water. In addition, PMMA accounted for 96.6% in S-SML and 49.5% in bulk water for the smallest MP category (10–53 μm). It can be assumed that the MP sources were marine paints—primarily APPs (antifouling paint particles)—as well as land coatings. Sea pollution due to microparticles from ship vessels should be given proper attention.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"56 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}