Laiba Jamshed, Amica Marie-Lucas, Genevieve A Perono, Gregg T Tomy, Jim J Petrik, Richard A Frank, L Mark Hewitt, Philippe J Thomas, Alison C Holloway
{"title":"环烷酸组分诱导的大鼠肝癌细胞代谢和线粒体改变:用色氨酸-犬尿氨酸比值监测代谢重编程。","authors":"Laiba Jamshed, Amica Marie-Lucas, Genevieve A Perono, Gregg T Tomy, Jim J Petrik, Richard A Frank, L Mark Hewitt, Philippe J Thomas, Alison C Holloway","doi":"10.3390/jox15030061","DOIUrl":null,"url":null,"abstract":"<p><p>Altered body condition and diminished growth in wildlife in the Alberta Oil Sands Region (AOSR) are prompting investigations into the impact of oil sands industrial activity on wildlife in the region. Chemical constituents from bitumen-influenced waters, including oil sands process-affected water (OSPW), can disrupt endocrine signaling, leading to aberrant lipid accumulation and altered glycemic control in mammals. This study aimed to investigate the effects of naphthenic acid fraction components (NAFCs), derived from OSPW, on energy homeostasis using the McA-RH7777 rat hepatocyte model. Cells were exposed to NAFCs at nominal concentrations of 0, 0.73, 14.7, and 73.4 mg/L for 24 and 48 h. We assessed gene expression related to lipid and glucose metabolism and measured triglyceride accumulation, glucose, and fatty acid uptake. NAFC exposure (14.7 and 73.4 mg/L) reduced triglyceride levels and glucose uptake and increased fatty acid uptake and the expression of beta-oxidation genes, suggesting a metabolic switch from glucose to fatty acid oxidation. This switch in substrate availability signifies a shift in cellular energy dynamics, potentially linked to altered mitochondrial function. To investigate this, we conducted adenosine triphosphate (ATP), mitochondrial membrane potential, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays to measure cellular ATP levels, mitochondrial membrane potential, and apoptosis, respectively. At both time points, 73.4 mg/L NAFC exposure resulted in increased ATP levels, induced mitochondrial membrane hyperpolarization, and increased apoptosis. These results suggest that mitochondrial efficiency is compromised, necessitating metabolic adaptations to maintain energy homeostasis. Given that cells exhibit metabolic flexibility that allows them to dynamically respond to changes in substrate availability, we further demonstrated that the kynurenine-tryptophan ratio (KTR) serves as a marker for a shift in energy metabolism under these stress conditions. This work provides a mechanistic framework for understanding how bitumen-derived organic contaminants may disrupt metabolic function in wildlife living in the AOSR. These findings further support the use of molecular markers like KTR to evaluate sub-lethal metabolic stress in environmental health monitoring.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Naphthenic Acid Fraction Components-Induced Metabolic and Mitochondrial Alterations in Rat Hepatoma Cells: Monitoring Metabolic Reprogramming with Tryptophan-Kynurenine Ratio.\",\"authors\":\"Laiba Jamshed, Amica Marie-Lucas, Genevieve A Perono, Gregg T Tomy, Jim J Petrik, Richard A Frank, L Mark Hewitt, Philippe J Thomas, Alison C Holloway\",\"doi\":\"10.3390/jox15030061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Altered body condition and diminished growth in wildlife in the Alberta Oil Sands Region (AOSR) are prompting investigations into the impact of oil sands industrial activity on wildlife in the region. Chemical constituents from bitumen-influenced waters, including oil sands process-affected water (OSPW), can disrupt endocrine signaling, leading to aberrant lipid accumulation and altered glycemic control in mammals. This study aimed to investigate the effects of naphthenic acid fraction components (NAFCs), derived from OSPW, on energy homeostasis using the McA-RH7777 rat hepatocyte model. Cells were exposed to NAFCs at nominal concentrations of 0, 0.73, 14.7, and 73.4 mg/L for 24 and 48 h. We assessed gene expression related to lipid and glucose metabolism and measured triglyceride accumulation, glucose, and fatty acid uptake. NAFC exposure (14.7 and 73.4 mg/L) reduced triglyceride levels and glucose uptake and increased fatty acid uptake and the expression of beta-oxidation genes, suggesting a metabolic switch from glucose to fatty acid oxidation. This switch in substrate availability signifies a shift in cellular energy dynamics, potentially linked to altered mitochondrial function. To investigate this, we conducted adenosine triphosphate (ATP), mitochondrial membrane potential, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays to measure cellular ATP levels, mitochondrial membrane potential, and apoptosis, respectively. At both time points, 73.4 mg/L NAFC exposure resulted in increased ATP levels, induced mitochondrial membrane hyperpolarization, and increased apoptosis. These results suggest that mitochondrial efficiency is compromised, necessitating metabolic adaptations to maintain energy homeostasis. Given that cells exhibit metabolic flexibility that allows them to dynamically respond to changes in substrate availability, we further demonstrated that the kynurenine-tryptophan ratio (KTR) serves as a marker for a shift in energy metabolism under these stress conditions. This work provides a mechanistic framework for understanding how bitumen-derived organic contaminants may disrupt metabolic function in wildlife living in the AOSR. These findings further support the use of molecular markers like KTR to evaluate sub-lethal metabolic stress in environmental health monitoring.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15030061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Naphthenic Acid Fraction Components-Induced Metabolic and Mitochondrial Alterations in Rat Hepatoma Cells: Monitoring Metabolic Reprogramming with Tryptophan-Kynurenine Ratio.
Altered body condition and diminished growth in wildlife in the Alberta Oil Sands Region (AOSR) are prompting investigations into the impact of oil sands industrial activity on wildlife in the region. Chemical constituents from bitumen-influenced waters, including oil sands process-affected water (OSPW), can disrupt endocrine signaling, leading to aberrant lipid accumulation and altered glycemic control in mammals. This study aimed to investigate the effects of naphthenic acid fraction components (NAFCs), derived from OSPW, on energy homeostasis using the McA-RH7777 rat hepatocyte model. Cells were exposed to NAFCs at nominal concentrations of 0, 0.73, 14.7, and 73.4 mg/L for 24 and 48 h. We assessed gene expression related to lipid and glucose metabolism and measured triglyceride accumulation, glucose, and fatty acid uptake. NAFC exposure (14.7 and 73.4 mg/L) reduced triglyceride levels and glucose uptake and increased fatty acid uptake and the expression of beta-oxidation genes, suggesting a metabolic switch from glucose to fatty acid oxidation. This switch in substrate availability signifies a shift in cellular energy dynamics, potentially linked to altered mitochondrial function. To investigate this, we conducted adenosine triphosphate (ATP), mitochondrial membrane potential, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays to measure cellular ATP levels, mitochondrial membrane potential, and apoptosis, respectively. At both time points, 73.4 mg/L NAFC exposure resulted in increased ATP levels, induced mitochondrial membrane hyperpolarization, and increased apoptosis. These results suggest that mitochondrial efficiency is compromised, necessitating metabolic adaptations to maintain energy homeostasis. Given that cells exhibit metabolic flexibility that allows them to dynamically respond to changes in substrate availability, we further demonstrated that the kynurenine-tryptophan ratio (KTR) serves as a marker for a shift in energy metabolism under these stress conditions. This work provides a mechanistic framework for understanding how bitumen-derived organic contaminants may disrupt metabolic function in wildlife living in the AOSR. These findings further support the use of molecular markers like KTR to evaluate sub-lethal metabolic stress in environmental health monitoring.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.