{"title":"Resistance and Biodegradation of Triclosan and Propylparaben by Isolated Bacteria from Greywater.","authors":"Daniella Itzhari, Joseph Nzeh, Zeev Ronen","doi":"10.3390/jox15020056","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the relationship between antibiotic-resistance genes and the antimicrobial agents, triclosan (TCS) and propylparaben (PPB). The greywater microbiome was repeatedly exposed to triclosan and propylparaben and the effect was analyzed using a combination of PCR, Etest, Biolog, 16S rRNA sequencing, and liquid chromatography. The taxonomic identification points to very similar or even identical isolates, however, the phenotypic analysis suggests that their metabolic potential is different, likely due to genomic variation or differences in the expression of the substrate utilization pathways. For both triclosan and propylparaben, the antibiotic resistance levels among isolates remain consistent regardless of the exposure duration. This suggests that antibiotic-resistance genes are acquired rapidly and that their presence is not directly proportional to the level of micropollutant exposure. In a biodegradation test, TCS was reduced by 50% after 7 h, while PPB decreased only after 75 h. For TCS, the minimal inhibition concentration (MIC) ranged from 64 to above 256 mg/mL. Conversely, for PPB the MIC for the tested strains ranged between 512 and 800 mg/mL. This study highlights the complex interaction between household xenobiotics, greywater microorganisms, and the emergence of antibiotic resistance.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15020056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the relationship between antibiotic-resistance genes and the antimicrobial agents, triclosan (TCS) and propylparaben (PPB). The greywater microbiome was repeatedly exposed to triclosan and propylparaben and the effect was analyzed using a combination of PCR, Etest, Biolog, 16S rRNA sequencing, and liquid chromatography. The taxonomic identification points to very similar or even identical isolates, however, the phenotypic analysis suggests that their metabolic potential is different, likely due to genomic variation or differences in the expression of the substrate utilization pathways. For both triclosan and propylparaben, the antibiotic resistance levels among isolates remain consistent regardless of the exposure duration. This suggests that antibiotic-resistance genes are acquired rapidly and that their presence is not directly proportional to the level of micropollutant exposure. In a biodegradation test, TCS was reduced by 50% after 7 h, while PPB decreased only after 75 h. For TCS, the minimal inhibition concentration (MIC) ranged from 64 to above 256 mg/mL. Conversely, for PPB the MIC for the tested strains ranged between 512 and 800 mg/mL. This study highlights the complex interaction between household xenobiotics, greywater microorganisms, and the emergence of antibiotic resistance.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.