Yasaman Aghaei Hashtjin, Mahdieh Raeeszadeh, Ali Parsa Khanghah
{"title":"重金属(镉和硒)在金鱼体内的相互作用实验研究:血液生化变化和氧化应激。","authors":"Yasaman Aghaei Hashtjin, Mahdieh Raeeszadeh, Ali Parsa Khanghah","doi":"10.3390/jox15020057","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish.</p><p><strong>Methods: </strong>A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis.</p><p><strong>Results: </strong>Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (<i>p</i> < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (<i>p</i> < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress.</p><p><strong>Conclusion: </strong>Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interaction of Heavy Metals (Cadmium and Selenium) in an Experimental Study on Goldfish: Hematobiochemical Changes and Oxidative Stress.\",\"authors\":\"Yasaman Aghaei Hashtjin, Mahdieh Raeeszadeh, Ali Parsa Khanghah\",\"doi\":\"10.3390/jox15020057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish.</p><p><strong>Methods: </strong>A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis.</p><p><strong>Results: </strong>Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (<i>p</i> < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (<i>p</i> < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress.</p><p><strong>Conclusion: </strong>Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15020057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15020057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Interaction of Heavy Metals (Cadmium and Selenium) in an Experimental Study on Goldfish: Hematobiochemical Changes and Oxidative Stress.
Background: Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish.
Methods: A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis.
Results: Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (p < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (p < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress.
Conclusion: Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.