{"title":"Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts.","authors":"Andra Oros","doi":"10.3390/jox15020059","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15020059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.