{"title":"植物细胞外囊泡给药的稳定性动力学研究。","authors":"Satyavati Rawat, Sanchit Arora, Madhukiran R Dhondale, Mansi Khadilkar, Sanjeev Kumar, Ashish Kumar Agrawal","doi":"10.3390/jox15020055","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stability Dynamics of Plant-Based Extracellular Vesicles Drug Delivery.\",\"authors\":\"Satyavati Rawat, Sanchit Arora, Madhukiran R Dhondale, Mansi Khadilkar, Sanjeev Kumar, Ashish Kumar Agrawal\",\"doi\":\"10.3390/jox15020055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15020055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15020055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Stability Dynamics of Plant-Based Extracellular Vesicles Drug Delivery.
Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.