Progress in Quantum Electronics最新文献

筛选
英文 中文
Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on “Recent progress in and perspectives of underwater wireless optical communication” 水下无线光通信:机遇、挑战与未来展望——“水下无线光通信的最新进展与展望”述评
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-09-01 DOI: 10.1016/j.pquantelec.2020.100275
Boon S. Ooi, Meiwei Kong, Tien Khee Ng
{"title":"Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on “Recent progress in and perspectives of underwater wireless optical communication”","authors":"Boon S. Ooi, Meiwei Kong, Tien Khee Ng","doi":"10.1016/j.pquantelec.2020.100275","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100275","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"73 ","pages":"Article 100275"},"PeriodicalIF":11.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1518672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Recent progress in and perspectives of underwater wireless optical communication 水下无线光通信的研究进展与展望
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-09-01 DOI: 10.1016/j.pquantelec.2020.100274
Shijie Zhu , Xinwei Chen , Xiaoyan Liu , Guoqi Zhang , Pengfei Tian
{"title":"Recent progress in and perspectives of underwater wireless optical communication","authors":"Shijie Zhu ,&nbsp;Xinwei Chen ,&nbsp;Xiaoyan Liu ,&nbsp;Guoqi Zhang ,&nbsp;Pengfei Tian","doi":"10.1016/j.pquantelec.2020.100274","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100274","url":null,"abstract":"<div><p><span><span>Underwater wireless optical communication (UWOC) is an emerging and feasible </span>underwater communication technology and has developed rapidly in recent years. Building a high-performance and practical UWOC system requires comprehensive consideration and optimization design from the device to the system, as well as from the internal modulation to the external environment. This paper provides an overview of the recent developments in UWOC systems, covering aspects about the system transmitters and receivers, advanced </span>modulation formats and underwater channels. Some key technologies to improve transmission capacity of UWOC are classified and summarized to provide guidance for system design. The main challenges and perspectives to achieve a reliable UWOC system are also mentioned. The summary and analysis of these advances and techniques will shed light on the future development of UWOC technology and assist in the construction of the internet of underwater things.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"73 ","pages":"Article 100274"},"PeriodicalIF":11.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2183580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 94
Rectifying antennas for energy harvesting from the microwaves to visible light: A review 微波可见光能量收集整流天线研究进展
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100265
C.A. Reynaud , D. Duché , J.-J. Simon , E. Sanchez-Adaime , O. Margeat , J. Ackermann , V. Jangid , C. Lebouin , D. Brunel , F. Dumur , D. Gigmes , G. Berginc , C.A. Nijhuis , L. Escoubas
{"title":"Rectifying antennas for energy harvesting from the microwaves to visible light: A review","authors":"C.A. Reynaud ,&nbsp;D. Duché ,&nbsp;J.-J. Simon ,&nbsp;E. Sanchez-Adaime ,&nbsp;O. Margeat ,&nbsp;J. Ackermann ,&nbsp;V. Jangid ,&nbsp;C. Lebouin ,&nbsp;D. Brunel ,&nbsp;F. Dumur ,&nbsp;D. Gigmes ,&nbsp;G. Berginc ,&nbsp;C.A. Nijhuis ,&nbsp;L. Escoubas","doi":"10.1016/j.pquantelec.2020.100265","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100265","url":null,"abstract":"<div><p><span>Rectifying antennas are often prensented as a potentiel technological breakthrough for energy harvesting. First theorized in the 1970’s, the downsizing of an antenna coupled with a </span>rectifier<span><span><span> has become technologically achievable with the progresses of fabrication techniques such as electron beam or </span>photolithography<span>. However, reaching infrared or visible region of the electromagnetic spectra still entails challenges on the integration of a rectifier operating in the terahertz range. New bottom up approaches are likely to bring a promising solution to this issue. To improve our understanding of the key points of rectifying antennas’ design for the infrared and </span></span>visible light<span>, and the challenges of device fabrication, this work reviews the progresses of this technology, going back from the first historical RF energy harvesting systems and covering the most innovative trends to this date.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"72 ","pages":"Article 100265"},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2183581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Watt-level ultrafast laser inscribed thulium waveguide lasers 瓦级超快激光镶嵌铥波导激光器
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100266
Esrom Kifle , Pavel Loiko , Carolina Romero , Javier Rodríguez Vázquez de Aldana , Magdalena Aguiló , Francesc Díaz , Patrice Camy , Uwe Griebner , Valentin Petrov , Xavier Mateos
{"title":"Watt-level ultrafast laser inscribed thulium waveguide lasers","authors":"Esrom Kifle ,&nbsp;Pavel Loiko ,&nbsp;Carolina Romero ,&nbsp;Javier Rodríguez Vázquez de Aldana ,&nbsp;Magdalena Aguiló ,&nbsp;Francesc Díaz ,&nbsp;Patrice Camy ,&nbsp;Uwe Griebner ,&nbsp;Valentin Petrov ,&nbsp;Xavier Mateos","doi":"10.1016/j.pquantelec.2020.100266","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100266","url":null,"abstract":"<div><p><span><span><span>We report on the first watt-level ultrafast laser inscribed </span>Thulium </span>waveguide (WG) lasers. Depressed-index buried channel WGs with a circular cladding (type III) are produced in monoclinic Tm</span><sup>3+</sup>:KLu(WO<sub>4</sub>)<sub>2</sub> crystals. Laser operation is achieved under conventional (<sup>3</sup>H<sub>6</sub> → <sup>3</sup>H<sub>4</sub>) and in-band (<sup>3</sup>H<sub>6</sub> → <sup>3</sup>F<sub>4</sub><span><span>) pumping. In the former case, employing a Raman fiber laser emitting at 1679 ​nm as pump, the continuous-wave Tm channel WG laser generated 1.37 ​W ​at 1915–1923 ​nm with a record-high slope efficiency of 82.7% (with respect to the absorbed pump power), a threshold of only 17 ​mW and a spatially single-mode output with </span>linear polarization. The WG propagation losses were 0.2 ​± ​0.3 ​dB/cm. Passive Q-switching of Tm channel WG lasers is achieved using Cr</span><sup>2+</sup>:ZnS and Cr<sup>2+</sup>:ZnSe saturable absorbers. With Cr<sup>2+</sup>:ZnS, record-short pulses of 2.6 ns/6.9 ​μJ ​at a repetition rate of 8.0 ​kHz were generated. The developed WGs are promising for compact GHz mode-locked lasers at ~2 ​μm.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"72 ","pages":"Article 100266"},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation 光谱相干性,第一部分:无源谐振器线宽,基本激光线宽,和肖洛-汤斯近似
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100255
Markus Pollnau , Marc Eichhorn
{"title":"Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation","authors":"Markus Pollnau ,&nbsp;Marc Eichhorn","doi":"10.1016/j.pquantelec.2020.100255","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100255","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The degree of spectral coherence characterizes the spectral purity of light. It can be equivalently expressed in the time domain by the decay time &lt;em&gt;τ&lt;/em&gt; or the quality factor &lt;em&gt;Q&lt;/em&gt;&lt;span&gt; of the light-emitting oscillator, the coherence time &lt;/span&gt;&lt;em&gt;τ&lt;/em&gt; &lt;sup&gt;&lt;em&gt;coh&lt;/em&gt;&lt;/sup&gt; or length &lt;span&gt;&lt;math&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;sup&gt;&lt;em&gt;coh&lt;/em&gt;&lt;/sup&gt;&lt;span&gt; of emitted light or, via Fourier transformation to the frequency domain, the linewidth Δ&lt;/span&gt;&lt;em&gt;ν&lt;/em&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt; of emitted light. We quantify these parameters for the reference situation of a passive Fabry-Pérot resonator. We investigate its &lt;/span&gt;spectral line shapes, mode profiles, and Airy distributions and verify that the sum of all mode profiles generates the corresponding Airy distribution. The Fabry-Pérot resonator is described, as an oscillator, by its Lorentzian linewidth and finesse and, as a scanning spectrometer, by its Airy linewidth and finesse. Furthermore, stimulated and spontaneous emission are analyzed semi-classically by employing Maxwell′s equations and the law of energy conservation. Investigation of emission by atoms inside a Fabry-Pérot resonator, the Lorentz oscillator model, the Kramers-Kronig relations, the amplitude-phase diagram, and the summation of quantized electric fields consistently suggests that stimulated and spontaneous emission of light occur with a phase 90° in lead of the incident field. These findings question the quantum-optical picture, which proposed, firstly, that &lt;/span&gt;stimulated emission occurred in phase, whereas spontaneous emission occurred at an arbitrary phase angle with respect to the incident field and, secondly, that the laser linewidth were due to amplitude and phase fluctuations induced by spontaneous emission. We emphasize that the first derivation of the Schawlow-Townes laser linewidth was entirely semi-classical but included the four approximations that (i) it is a truly continuous-wave (cw) laser, (ii) it is an ideal four-level laser, (iii) its resonator exhibits no intrinsic losses, and (iv) one photon is coupled spontaneously into the lasing mode per photon-decay time &lt;/span&gt;&lt;em&gt;τ&lt;/em&gt;&lt;sub&gt;&lt;em&gt;c&lt;/em&gt;&lt;/sub&gt; of the resonator, independent of the pump rate. After discussing the inconsistencies of existing semi-classical and quantum-optical descriptions of the laser linewidth, we introduce the spectral-coherence factor, which quantifies spectral coherence in an active compared to its underlying passive mode, and derive semi-classically, based on the principle that the gain elongates the photon-decay time and narrows the linewidth, the fundamental linewidth of a single lasing mode. This linewidth is valid for lasers with an arbitrary energy-level system, operating below, at, or above threshold and in a cw or a transient lasing regime, with the gain being smaller, equal, or larger compared to the losses. By applying approximations (i)-(iv) we reproduce the original Schawlow-Townes equation. It provides the hi","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"72 ","pages":"Article 100255"},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Terahertz sources based on stimulated polariton scattering 基于受激极子散射的太赫兹源
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100254
Andrew J. Lee, David J. Spence, Helen M. Pask
{"title":"Terahertz sources based on stimulated polariton scattering","authors":"Andrew J. Lee,&nbsp;David J. Spence,&nbsp;Helen M. Pask","doi":"10.1016/j.pquantelec.2020.100254","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100254","url":null,"abstract":"<div><p>In this paper we review the field of terahertz (THz) sources which make use of the nonlinear, stimulated polariton scattering (SPS) process. A historical perspective of the technology is offered, in addition to an investigation of modern SPS-based THz sources. Breakthroughs in these source technologies have coincided with rapid developments in laser technology over the past 10 years. We are now in an age where pulsed SPS-THz sources are generating peak powers in excess of 50 ​kW, and continuous wave SPS-THz sources can be produced using diode pump powers as low as 2.3 ​W. The versatility of this approach to THz generation has enabled the generation of coherent THz radiation across continuous wave (CW), nanosecond-, and picosecond-pulsed modalities, with sources spanning the frequency range 0.5–13 ​THz. Being based on robust and well-developed, crystalline solid-state laser technology, these sources hold great promise as an enabling technology for a plethora of THz applications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100254"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display 全彩色微型led显示屏的生长、转移印刷和色彩转换技术
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100263
Xiaojie Zhou , Pengfei Tian , Chin-Wei Sher , Jiang Wu , Hezhuang Liu , Ran Liu , Hao-Chung Kuo
{"title":"Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display","authors":"Xiaojie Zhou ,&nbsp;Pengfei Tian ,&nbsp;Chin-Wei Sher ,&nbsp;Jiang Wu ,&nbsp;Hezhuang Liu ,&nbsp;Ran Liu ,&nbsp;Hao-Chung Kuo","doi":"10.1016/j.pquantelec.2020.100263","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100263","url":null,"abstract":"<div><p>Micro light-emitting diode (micro-LED) display, mainly based on inorganic GaN-based LED, is an emerging technique with high contrast, low power consumption, long lifetime and fast response time compared to liquid crystal display<span> (LCD) and organic light-emitting diode (OLED) display. Therefore, many research institutes and companies have conducted in-depth research on micro-LED in the full-colour display, gradually realizing the commercialization of micro-LED. And the current research results of micro-LED indicate that it can be widely used in display, visible light communication (VLC), biomedicine and other fields. Although micro-LED has broad commercial prospects, it still faces great challenges, such as the effect of size reduction on performance, the realization of high-density integration on a single wafer for independent addressing of full-colour micro-LED display, the improvement of repair technique and yield et al. This paper reviews the key solutions to the technical difficulties of the full-colour micro-LED display. Specifically, this review analyzes and discusses a variety of advanced full-colour micro-LED display techniques with a focus on three aspects: growth technique, transfer printing technique and colour conversion technique. This review demonstrates the opportunities, progress and challenges of these techniques, aiming to guide the development of full-colour micro-LED display.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100263"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 134
Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers 超短飞秒脉冲在锁模光纤激光器中的产生、优化和应用
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100264
Ying Han , Yubin Guo , Bo Gao , Chunyang Ma , Ruohan Zhang , Han Zhang
{"title":"Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers","authors":"Ying Han ,&nbsp;Yubin Guo ,&nbsp;Bo Gao ,&nbsp;Chunyang Ma ,&nbsp;Ruohan Zhang ,&nbsp;Han Zhang","doi":"10.1016/j.pquantelec.2020.100264","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100264","url":null,"abstract":"<div><p>Ultrafast femtosecond mode-locked fiber laser plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy<span>, material micromachining, and so on. It’s not only an important tool for people to explore the world, but also a pillar field of laser technology. This review present the generation of femtosecond pulses in ultrafast mode-locked fiber lasers using active, passive, hybrid mode-locking techniques, the emphasis is given to passively mode-locked fiber lasers. In terms of the optimization of femtosecond pulses, we introduce the external compression technique to obtain shorter pulse width, chirped pulse amplification technique to increase pulse energy and obtain high energy femtosecond pulses at the practical band. Furthermore, the coherent beam combination and divided pulse amplification technique to further boost pulse energy are summarized. At the end of this review, we present a detailed overview of the applications of femtosecond pulses including the generation of supercontinuum and tunable femtosecond pulses, and some practical applications. Several perspectives and research directions of femtosecond pulses are also addressed.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100264"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
Chip-scale GaN integration 芯片级GaN集成
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-03-01 DOI: 10.1016/j.pquantelec.2020.100247
K.H. Li, W.Y. Fu, H.W. Choi
{"title":"Chip-scale GaN integration","authors":"K.H. Li,&nbsp;W.Y. Fu,&nbsp;H.W. Choi","doi":"10.1016/j.pquantelec.2020.100247","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100247","url":null,"abstract":"<div><p><span>Blue LEDs<span><span> and HEMTs based on III-Nitride have been flourishing commercially across the globe, thanks largely to breakthroughs in the material quality of the wide-bandgap compound semiconductor back in the 1990s. The realizations of white-light LEDs, blu-ray systems, and lately efficient compact chargers have drastically changed the way we live and have contributed tremendously to global energy saving efforts. The maturity and diversity of modern discrete GaN-based devices open up opportunities for an integrated GaN platform with extended functionalities and applications. In this review paper, we present an overview of the monolithic and heterogeneous integration of GaN devices and components. Various methods for the integration of electronic, </span>optoelectronic, and </span></span>optical components based on GaN are discussed.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"70 ","pages":"Article 100247"},"PeriodicalIF":11.7,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Recent advances in microwave photonics instantaneous frequency measurements 微波光子学瞬时频率测量的最新进展
IF 11.7 1区 物理与天体物理
Progress in Quantum Electronics Pub Date : 2020-01-01 DOI: 10.1016/j.pquantelec.2019.100237
Lam Anh Bui
{"title":"Recent advances in microwave photonics instantaneous frequency measurements","authors":"Lam Anh Bui","doi":"10.1016/j.pquantelec.2019.100237","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100237","url":null,"abstract":"<div><p>This paper reviews the field of microwave photonics<span> instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"69 ","pages":"Article 100237"},"PeriodicalIF":11.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信