Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qing Shi , Jianlong Zhao , Lijuan Liang
{"title":"Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review","authors":"Qing Shi ,&nbsp;Jianlong Zhao ,&nbsp;Lijuan Liang","doi":"10.1016/j.pquantelec.2020.100298","DOIUrl":null,"url":null,"abstract":"<div><p>Biosensor<span><span><span> technology is a quite attractive and rapidly developing research field in recent years, and the sub field of optical photonic crystal (PC) biosensor based on </span>label free sensing technology has also made great progress in this period. This review mainly concentrates on advances in the label free refractometric sensing based two dimensional (2D) PC slab biosensors particularly in the last decade, emphasizing the development and evolution of structural design. It begins with a brief discussion on the basic principles and design methods of label free 2D PC biosensors. Then, the sensors are classified according to the designed geometric structure and research progress of various sensors is reviewed, highlighting efforts dedicated to improving the transducer configuration and integration. Additionally, </span>surface functionalization methods for different materials to produce reproducible surface properties and different detection methods for biological targets are introduced for evaluation. 2D PC refractometric biosensors have been applied to a great many applications varying from biotechnology, food safety, water quality monitoring to clinical diagnosis. Finally, the authors’ views on current limitations of the slab for biosensing as well as the optimizable aspects are presented.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100298","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672720300574","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 10

Abstract

Biosensor technology is a quite attractive and rapidly developing research field in recent years, and the sub field of optical photonic crystal (PC) biosensor based on label free sensing technology has also made great progress in this period. This review mainly concentrates on advances in the label free refractometric sensing based two dimensional (2D) PC slab biosensors particularly in the last decade, emphasizing the development and evolution of structural design. It begins with a brief discussion on the basic principles and design methods of label free 2D PC biosensors. Then, the sensors are classified according to the designed geometric structure and research progress of various sensors is reviewed, highlighting efforts dedicated to improving the transducer configuration and integration. Additionally, surface functionalization methods for different materials to produce reproducible surface properties and different detection methods for biological targets are introduced for evaluation. 2D PC refractometric biosensors have been applied to a great many applications varying from biotechnology, food safety, water quality monitoring to clinical diagnosis. Finally, the authors’ views on current limitations of the slab for biosensing as well as the optimizable aspects are presented.

使用无标签折射传感方案的二维光子晶体板生物传感器:综述
生物传感器技术是近年来一个非常有吸引力和发展迅速的研究领域,基于无标签传感技术的光子晶体(PC)生物传感器子领域也在这一时期取得了很大的进展。本文主要综述了基于二维平板生物传感器的无标签折射传感技术的进展,特别是近十年来,重点介绍了结构设计的发展和演变。本文首先简要讨论了无标签二维PC生物传感器的基本原理和设计方法。然后,根据设计的几何结构对传感器进行分类,回顾了各种传感器的研究进展,重点介绍了传感器配置和集成的改进工作。此外,介绍了不同材料的表面功能化方法,以产生可重复的表面特性,以及不同的生物靶点检测方法,以进行评估。二维PC折射生物传感器已被广泛应用于生物技术、食品安全、水质监测和临床诊断等领域。最后,作者对目前平板生物传感的局限性以及可优化的方面提出了看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信