Progress in Polymer Science最新文献

筛选
英文 中文
Advanced functional membranes based on amphiphilic copolymers 基于两性共聚物的先进功能膜
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-11-13 DOI: 10.1016/j.progpolymsci.2024.101907
Zhuan Yi , Lijing Zhu , Ruiyan Xiong , Chuanjie Fang , Baoku Zhu , Liping Zhu , Hongbo Zeng
{"title":"Advanced functional membranes based on amphiphilic copolymers","authors":"Zhuan Yi ,&nbsp;Lijing Zhu ,&nbsp;Ruiyan Xiong ,&nbsp;Chuanjie Fang ,&nbsp;Baoku Zhu ,&nbsp;Liping Zhu ,&nbsp;Hongbo Zeng","doi":"10.1016/j.progpolymsci.2024.101907","DOIUrl":"10.1016/j.progpolymsci.2024.101907","url":null,"abstract":"<div><div>Membranes with advanced and novel functions play important roles in emerging applications ranging from industrial separations, water purification, energy harvesting and storage, healthcare, biomimetic membranes and more. The performance of membranes in these critical applications is fundamentally determined by their interfacial interactions with surrounding ions, molecules, particles, emulsions, and bioactive agents. Amphiphilic copolymers containing both hydrophobic and hydrophilic segments will spontaneously assemble into multiphase and hierarchical structures, providing a general solution for regulating the surface physicochemical properties of membranes used in the aforementioned urgent applications. Controlled synthesis of amphiphilic copolymers and the methods for fabricating membranes from these copolymers with predetermined performance are fundamentally important for their applications. In this work, we first summarize the polymerization techniques for synthesizing amphiphilic copolymers used for membrane materials. We then review the methods for fabricating membranes from amphiphilic copolymers and highlight the urgent applications of advanced functional membranes derived from them. We also discuss some remaining challenges and provide insights into future directions, especially as the circular polymer economy and artificial intelligence are setting new requirements for polymer science. This work offers a comprehensive overview of recent advances in functional materials based on amphiphilic polymers, including the working principles and relationships between polymer structure, processing strategies, and membrane performance, which provides new insights into the development of high-performance and next-generation polymeric membranes through the precise, functionality-driven synthesis of novel amphiphilic copolymers and the controlled fabrication of membranes.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101907"},"PeriodicalIF":26.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress toward sustainable polymer technologies with ball-mill grinding 利用球磨机研磨实现可持续聚合物技术的进展
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-10-28 DOI: 10.1016/j.progpolymsci.2024.101900
Antonio Rizzo , Gregory I. Peterson
{"title":"Progress toward sustainable polymer technologies with ball-mill grinding","authors":"Antonio Rizzo ,&nbsp;Gregory I. Peterson","doi":"10.1016/j.progpolymsci.2024.101900","DOIUrl":"10.1016/j.progpolymsci.2024.101900","url":null,"abstract":"<div><div>The ball-mill grinding (BMG) of polymers has a long history, starting with Staudinger showing in the 1930s that polystyrene undergoes chain scission upon ball milling. However, BMG has significantly expanded from being used solely for polymer degradation to a synthetic tool for a range of applications only in the last decade. Now, BMG has emerged as a promising mechanochemistry technique for several critically important polymer technologies, such as recycling and upcycling, and often provides novel or enhanced mechanochemical reactivity. As a solid-state technique in which solvents are often minimized or eliminated, BMG provides a greener and more sustainable route to various applications. Also, in contrast to many other mechanochemistry techniques that are commonly employed with polymers, BMG has the potential to be scaled to industrially relevant levels. In our review, we provide an extended and deep overview of the phenomena that occur when polymers are subjected to BMG and show how these phenomena can be exploited for various applications. We treat particularly technologies that, especially in the context of our current plastic pollution crisis, are relevant to trending topics in the field of polymer science, such as polymer degradation, chemical recycling, recycling, and upcycling. Other important topics covered in this review include the mechanical activation of responsive polymers, by the use of mechanophores or by exploiting the reactivity of the reactive intermediates generated during chain scission, and polymer-assisted grinding, where polymers serve as additives or reagents to aid in mechanochemical syntheses or other processes.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101900"},"PeriodicalIF":26.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives 本征可拉伸聚合物光伏技术的稳定性:基础、成就与展望
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-10-22 DOI: 10.1016/j.progpolymsci.2024.101899
Yurim Bae , Dohyun Kim , Saimeng Li , Yelim Choi , Sung Yun Son , Taiho Park , Long Ye
{"title":"Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives","authors":"Yurim Bae ,&nbsp;Dohyun Kim ,&nbsp;Saimeng Li ,&nbsp;Yelim Choi ,&nbsp;Sung Yun Son ,&nbsp;Taiho Park ,&nbsp;Long Ye","doi":"10.1016/j.progpolymsci.2024.101899","DOIUrl":"10.1016/j.progpolymsci.2024.101899","url":null,"abstract":"<div><div>Stretchable organic photovoltaics have recently garnered significant attention as promising power sources for wearable electronic systems. Especially, research on intrinsically stretchable organic photovoltaics (IS-OPVs) has been accelerated, as the unique advantage of IS-OPVs is their inherent deformability, which does not depend on fabrication processes or pre-treatment methods. Remarkably, the photoactive area increases during stretching, indicating a potential increase in power output and underscoring IS-OPV's strengths as a power source in self-powered electronic systems. Despite rapid advancements in power conversion efficiency and stretchability, IS-OPVs still encounter challenges in market adoption. The most critical performance factor for IS-OPVs is stability, which ensures stable operation under mechanical stress. This review analyses the structural factors that degrade the stability of IS-OPVs. Given their multilayer structure, mechanical failure can result from various complex causes, thus complicating the investigation and comprehensive understanding of the factors that promote performance degradation. This review introduces and discusses recently developed engineering strategies aimed at improving the mechanical stability of IS-OPVs. Furthermore, this review summarizes various experimental methods to assess the performance of IS-OPVs and discusses the insights gained from these experiments in relation to fabricating mechanically stable IS-OPVs with enhanced performance.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101899"},"PeriodicalIF":26.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes 热激活延迟荧光聚合物及其在有机发光二极管中的应用
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-10-01 DOI: 10.1016/j.progpolymsci.2024.101892
Tao Wang , Yanxiang Cheng , Chuluo Yang
{"title":"Thermally activated delayed fluorescence polymers and their application in organic light-emitting diodes","authors":"Tao Wang ,&nbsp;Yanxiang Cheng ,&nbsp;Chuluo Yang","doi":"10.1016/j.progpolymsci.2024.101892","DOIUrl":"10.1016/j.progpolymsci.2024.101892","url":null,"abstract":"<div><div>Benefitting from the good mechanical and thermal stability, as well as compatibility with flexible substrate and large-scale preparation, polymers with thermally activated delayed fluorescence (TADF) polymers show great potential for application in the fields of organic light-emitting diodes (OLEDs). In this review, we firstly introduce the mechanism of TADF materials and discuss the underlying design principles for TADF polymers. Next, we survey strategies and relevant studies pertaining to the construction of TADF polymers. Subsequently, we offer a comprehensive summary of the characteristics and the suitable application scopes for each strategy, specifically focusing on emitting color. Finally, the remaining challenges in this field are proposed in conclusion section.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101892"},"PeriodicalIF":26.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor photocatalysts in photopolymerization processes: Mechanistic insights, recent advances, and future prospects 光聚合过程中的半导体光催化剂:机理认识、最新进展和未来展望
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-30 DOI: 10.1016/j.progpolymsci.2024.101891
Kasidid Yaemsunthorn , Wojciech Macyk , Joanna Ortyl
{"title":"Semiconductor photocatalysts in photopolymerization processes: Mechanistic insights, recent advances, and future prospects","authors":"Kasidid Yaemsunthorn ,&nbsp;Wojciech Macyk ,&nbsp;Joanna Ortyl","doi":"10.1016/j.progpolymsci.2024.101891","DOIUrl":"10.1016/j.progpolymsci.2024.101891","url":null,"abstract":"<div><div>This review discusses the fundamental principles of photocatalysis and essential properties of semiconductor photocatalysts (PCs) in the context of photo-induced and photo-mediated polymerization applications. This encompasses the distinct mechanisms of radical photopolymerization, including direct monomer activation, Free-Radical Polymerization (FRP), and advanced Reversible-Deactivation Radical Polymerization (RDRP) techniques such as Atom Transfer Radical Polymerization (ATRP) and Reversible Addition−Fragmentation Chain Transfer (RAFT). Emphasis is placed on the significant roles played by the photocatalyst and the specific type of reaction being employed. The recent development and integration of upconversion materials is also included. The scope of this exploration encompasses a comprehensive survey of diverse photocatalysts and reaction conditions, spanning historical milestones and recent advancements. In addition, this review explores potential applications and offers insights into future developments. The overarching goal is to empower readers, provide a deeper understanding of semiconductor photocatalyst-based photopolymerization functions, and serve as a catalyst for further research and development in this dynamic field.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101891"},"PeriodicalIF":26.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic polymeric materials via hydrogen-bond cross-linking: Effect of multiple network topologies 通过氢键交联获得动态聚合物材料:多种网络拓扑结构的影响
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-24 DOI: 10.1016/j.progpolymsci.2024.101890
Yuting Ren , Xia Dong
{"title":"Dynamic polymeric materials via hydrogen-bond cross-linking: Effect of multiple network topologies","authors":"Yuting Ren ,&nbsp;Xia Dong","doi":"10.1016/j.progpolymsci.2024.101890","DOIUrl":"10.1016/j.progpolymsci.2024.101890","url":null,"abstract":"<div><div>Hydrogen bonds (H-bonds) exhibit excellent reversibility, high orientation, and flexible designability among all dynamic non-covalent bonds (DNBs). Herein, the effect of multiple network topologies (including single/double/triple cross-linked networks) in H-bond based dynamic polymeric materials (DPMs) is summarized with the structural design strategies and molecular mechanisms. Additionally, their potential applications in improving mechanical properties, self-healing capabilities, and biomedical fields are also presented in this paper. The first part introduces the basic design principle of single physically cross-linked networks formed by H-bonds. Influenced by the low mechanical strength of H-bonds, the tunability and designability of single H-bonded networks are limited. The second part focuses on the double cross-linked networks via H-bonds and other dynamic interactions, the strategy of exploiting the synergistic enhancement of double networks can improve the comprehensive performance of materials considerably. Then, the third and fourth parts briefly introduce the research progress of triple cross-linked networks and the biomedical applications of H-bond based DPMs. Finally, the development trend of H-bond based DPMs is predicted based on the above groundbreaking and representative research results.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101890"},"PeriodicalIF":26.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polypept(o)ides – Origins, synthesis, applications and future directions 多肽--起源、合成、应用和未来方向
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-24 DOI: 10.1016/j.progpolymsci.2024.101889
Tobias Alexander Bauer , Leon Simić , Joachim F.R. Van Guyse , Aroa Duro-Castaño , Vicent J. Nebot , Matthias Barz
{"title":"Polypept(o)ides – Origins, synthesis, applications and future directions","authors":"Tobias Alexander Bauer ,&nbsp;Leon Simić ,&nbsp;Joachim F.R. Van Guyse ,&nbsp;Aroa Duro-Castaño ,&nbsp;Vicent J. Nebot ,&nbsp;Matthias Barz","doi":"10.1016/j.progpolymsci.2024.101889","DOIUrl":"10.1016/j.progpolymsci.2024.101889","url":null,"abstract":"<div><div>Polypept(o)ides combine the stealth-like properties of polypeptoids such as polysarcosine (poly(<em>N</em>-methyl glycine), pSar) with the multifunctionality and intrinsic stimuli-responsiveness of synthetic polypeptides. This class of copolymers can be synthesized by controlled living ring-opening polymerization of the corresponding α-amino acid <em>N</em>-carboxyanhydrides (NCAs) and <em>N</em>-substituted glycine <em>N</em>-carboxyanhydrides (NNCAs). When the polymerization is performed under clean conditions, the resulting copolymers are characterized by high end-group fidelity and Poisson-like molecular weight distributions with dispersities below 1.2. While pSar might be able to tackle most of the current concerns of poly(ethylene glycol) (PEG), <em>e.g.</em>, acute immune responses, the polypeptide part can provide a plethora of reactivity or functionality, allowing to tailor the polymer for specific tasks. In this review, we provide an overview on the origins of NCA polymerization and polypept(o)ides and provide a detailed overview on the last decade of research focusing on synthesis, characterization, and application. Arguably the biggest applicational progress for polypept(o)ides has been made in nanomedicine. Here, the remarkable combination of functionality, biocompatibility and a high degree of synthetic control has led to established protocols for the certified production of polypept(o)ides, which will enable the rapid clinical translation for the years to come.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"158 ","pages":"Article 101889"},"PeriodicalIF":26.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering surface-grafted polymers for adhesion and friction control 用于粘附和摩擦控制的工程表面接枝聚合物
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-15 DOI: 10.1016/j.progpolymsci.2024.101888
Yunlei Zhang , Bo Yu , Shuanhong Ma , Yanfei Ma , Guorui Zhang , Keling Hu , Zhengfeng Ma , Wenbo Sheng , Bin Li , Feng Zhou
{"title":"Engineering surface-grafted polymers for adhesion and friction control","authors":"Yunlei Zhang ,&nbsp;Bo Yu ,&nbsp;Shuanhong Ma ,&nbsp;Yanfei Ma ,&nbsp;Guorui Zhang ,&nbsp;Keling Hu ,&nbsp;Zhengfeng Ma ,&nbsp;Wenbo Sheng ,&nbsp;Bin Li ,&nbsp;Feng Zhou","doi":"10.1016/j.progpolymsci.2024.101888","DOIUrl":"10.1016/j.progpolymsci.2024.101888","url":null,"abstract":"<div><p>The last few decades have witnessed the great progress in surface modification through the use of functional polymer coatings. Surface-grafted polymers with thickness ranging from several nanometers to micrometers have been proven to significantly improve the surface properties of materials, thus enabling diverse, customizable, and controllable performances. Consequently, surface-grafting has become a key tool in scientific research on surface/interface and in surface engineering applications. The interface adhesion and friction between materials and their environments can be precisely controlled by grafting specially designed polymer coatings on material surfaces. As a result, the use of surface-grafted polymers to control the adhesion and friction of materials has attracted extensive attention across various disciplines, from polymer chemistry, physics, and materials science to biology and medical science. This review starts with a discussion of functional surfaces in nature that exhibit unique adhesion and friction phenomena. It then introduces the fundamental principles of tribology and the adhesion and friction behaviors of polymer surfaces. It covers different methods for producing polymer coatings and the corresponding strategies for controlling adhesion and friction. Finally, the challenges and barriers that prevent broader application of surface-grafted polymers are discussed and an outlook of future opportunities is presented.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"157 ","pages":"Article 101888"},"PeriodicalIF":26.0,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of computational approaches used in the modelling, design, and manufacturing of biodegradable and biobased polymers 可生物降解和生物基聚合物建模、设计和制造中使用的计算方法综述
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-10 DOI: 10.1016/j.progpolymsci.2024.101874
Bronwyn G. Laycock, Clement Matthew Chan, Peter J. Halley
{"title":"A review of computational approaches used in the modelling, design, and manufacturing of biodegradable and biobased polymers","authors":"Bronwyn G. Laycock,&nbsp;Clement Matthew Chan,&nbsp;Peter J. Halley","doi":"10.1016/j.progpolymsci.2024.101874","DOIUrl":"10.1016/j.progpolymsci.2024.101874","url":null,"abstract":"<div><p>The design and manufacture of new biodegradable and bioderived polymeric materials has traditionally taken place through experimentation and material characterisation. However, cutting-edge computational methods now provide a less expensive and more efficient approach to innovative biopolymer design and scale-up. In particular, the holistic framework provided by Materials 4.0 combines multiscale simulations and computational modelling with theory and next-generation informatics (big data integration and artificial intelligence) to model biopolymer structures, understand their flow and processibility, and predict their properties. These computational methods are being utilised to model and forecast the properties of a wide variety of biopolymeric materials, including the large family of biodegradable polyesters along with lignocellulosics, polysaccharides, proteinaceous materials, natural rubber, and so on. Ranging from quantum- to macroscale, computational modelling acts as a complement to traditional experimental techniques, probing molecular structure and intramolecular interactions as well as reaction mechanisms. This enables further kinetic modelling studies and molecular simulations. The research has been further expanded to include the use of machine learning approaches for material property optimisation in conjunction with expert knowledge and relevant experimental data. Aside from the modelling of structure-property relationships, computational modelling has also been used to predict the effect of biopolymer modifications and the influence of external factors such as the application of external fields or applied stress and the effects of moisture. In summary, there is a fast-developing library of computational modelling data for biopolymers, and the development of Materials 4.0 in this sector has enabled greater flexibility in design and processing options in advance of more expensive and time-consuming testing.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"157 ","pages":"Article 101874"},"PeriodicalIF":26.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000911/pdfft?md5=12ba5f49656908a32908181599ac5c00&pid=1-s2.0-S0079670024000911-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoiniferter polymerization: Illuminating the history, ascendency, and renaissance 光iferter 聚合:照亮历史、崛起与复兴
IF 26 1区 化学
Progress in Polymer Science Pub Date : 2024-09-01 DOI: 10.1016/j.progpolymsci.2024.101871
Rhys W. Hughes , Megan E. Lott , Rebecca A. Olson S, Brent S. Sumerlin
{"title":"Photoiniferter polymerization: Illuminating the history, ascendency, and renaissance","authors":"Rhys W. Hughes ,&nbsp;Megan E. Lott ,&nbsp;Rebecca A. Olson S,&nbsp;Brent S. Sumerlin","doi":"10.1016/j.progpolymsci.2024.101871","DOIUrl":"10.1016/j.progpolymsci.2024.101871","url":null,"abstract":"<div><p>In this perspective, we explore the historical evolution, photochemical processes, and distinct utility of photoiniferter polymerization. We aim to provide a practical guide encompassing the selection of iniferter and monomer, coupled with the optimization of light wavelengths to conduct efficient photoiniferter polymerizations. We delve into the impact of iniferter structure on photophysical properties and the resulting polymerization behavior. Furthermore, we highlight ongoing research efforts employing photoiniferter polymerization, emphasizing its potential applications in cutting-edge areas of research such as 3D printing and the synthesis of ultra-high molecular weight polymers (<span><math><mo>≥</mo></math></span>10<sup>6</sup> g mol<sup>-1</sup>). Through this perspective, we aim to clarify both the fundamental principles and the practical considerations of photoiniferter polymerization, ultimately advancing its utility and paving the way for innovative applications in polymer science.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"156 ","pages":"Article 101871"},"PeriodicalIF":26.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信