Zoi Terzopoulou, Alexandra Zamboulis, Nikolaos D. Bikiaris, Eleftheria Xanthopoulou, Rafail O. Ioannidis, Dimitrios N. Bikiaris
{"title":"A Decade of Innovation: Synthesis, Properties and Applications of PLA Copolymers","authors":"Zoi Terzopoulou, Alexandra Zamboulis, Nikolaos D. Bikiaris, Eleftheria Xanthopoulou, Rafail O. Ioannidis, Dimitrios N. Bikiaris","doi":"10.1016/j.progpolymsci.2025.101991","DOIUrl":null,"url":null,"abstract":"Over the past decade, poly(lactic acid) (PLA) copolymers have emerged as a versatile class of materials, offering enhanced properties and broader application potential compared to neat PLA. As the leading biobased plastic, PLA has high strength, processability, and industrial compostability; however, its brittleness, limited thermal stability, and slow (bio)degradation under ambient conditions hinder its widespread adoption in advanced applications. This review provides a comprehensive analysis of PLA-based copolymers, excluding PLA stereoisomers and poly(lactic-co-glycolic acid) (PLGA), focusing on their synthesis, structure-property relationships, and potential uses. Copolymerization strategies—including ring-opening polymerization (ROP), polycondensation, and controlled radical polymerization—enable precise control over PLA’s mechanical, thermal, and degradation characteristics. The incorporation of diverse comonomers, such as lactones, diacids, diols, poly(ethylene glycol) (PEG), and naturally derived polymers, has led to copolymers with tuneable properties suited for packaging, textiles, biomedical applications, and sustainable materials engineering. Advances in block, random, and graft copolymer architectures further expand PLA's functionality, enabling the design of high-performance biobased materials. By summarizing recent findings, this work highlights how tailored PLA copolymers are shaping the future of sustainable polymers.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"68 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.progpolymsci.2025.101991","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, poly(lactic acid) (PLA) copolymers have emerged as a versatile class of materials, offering enhanced properties and broader application potential compared to neat PLA. As the leading biobased plastic, PLA has high strength, processability, and industrial compostability; however, its brittleness, limited thermal stability, and slow (bio)degradation under ambient conditions hinder its widespread adoption in advanced applications. This review provides a comprehensive analysis of PLA-based copolymers, excluding PLA stereoisomers and poly(lactic-co-glycolic acid) (PLGA), focusing on their synthesis, structure-property relationships, and potential uses. Copolymerization strategies—including ring-opening polymerization (ROP), polycondensation, and controlled radical polymerization—enable precise control over PLA’s mechanical, thermal, and degradation characteristics. The incorporation of diverse comonomers, such as lactones, diacids, diols, poly(ethylene glycol) (PEG), and naturally derived polymers, has led to copolymers with tuneable properties suited for packaging, textiles, biomedical applications, and sustainable materials engineering. Advances in block, random, and graft copolymer architectures further expand PLA's functionality, enabling the design of high-performance biobased materials. By summarizing recent findings, this work highlights how tailored PLA copolymers are shaping the future of sustainable polymers.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.