Huan Tan , Xiaolan Li , Linlong Li , Xue Bai , Jing You , Yuanyuan Zhou , Shirun Chu , Xiao Huang , Qiaoli Wu , Jie Weng , Jun Li
{"title":"Recent advances in the design of hydrogels: Renaissance of the Hofmeister effect","authors":"Huan Tan , Xiaolan Li , Linlong Li , Xue Bai , Jing You , Yuanyuan Zhou , Shirun Chu , Xiao Huang , Qiaoli Wu , Jie Weng , Jun Li","doi":"10.1016/j.progpolymsci.2025.101989","DOIUrl":"10.1016/j.progpolymsci.2025.101989","url":null,"abstract":"<div><div>The Hofmeister effect has been known for >135 years since Hofmeister and Lewith’s foundational work. Over the past decade, salt treatment induced by the Hofmeister effect in concentrated gelator molecules has attracted considerable interest in designing functional hydrogels without any complicated chemical modifications. Herein, we provide a detailed overview of recent advances in using the Hofmeister effect to regulate the properties of hydrogels, from the perspective of fundamental theories to applications. This review comprehensively emphasizes the main interactions or effects related to specific ions influencing the performance of pre-gel solutions for hydrogel formation. Moreover, this review focuses on the roles of salt ions in regulating the properties and functionalities of hydrogels, including mechanical properties, ionic conductivity, anti-freezing capability, optical properties, printability, analytical sensitivity, and shape memory ability. Additionally, we provide an overview of the potential applications of these hydrogels in various fields. Finally, this review highlights the challenges and opportunities of this approach and proposes potential issues for understanding the Hofmeister effect in designing functional hydrogels. The broad scale and versatility of this approach make it a promising strategy for developing task-specific hydrogels with customized properties and functionalities.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101989"},"PeriodicalIF":26.0,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PEDOT:PSS-based Electronic Materials: Preparation, Performance Tuning, Processing, Applications, and Future Prospect","authors":"Shuai Chen, Lishan Liang, Yuqian Zhang, Kaiwen Lin, Mingna Yang, Ling Zhu, Xiaomei Yang, Ling Zang, Baoyang Lu","doi":"10.1016/j.progpolymsci.2025.101990","DOIUrl":"https://doi.org/10.1016/j.progpolymsci.2025.101990","url":null,"abstract":"Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) represents a breakthrough in addressing the processability challenges of traditionally insoluble and infusible conducting polymers (CPs). It uniquely combines solution processability with high chemical and thermal stability, excellent biocompatibility, and outstanding electrical, optical, and mechanical properties. For over 35 years, PEDOT:PSS has remained at the forefront of both commercial and academic research in organic electronics, spanning disciplines such as chemistry, materials science, biology, electronics, medicine, energy, and engineering. This review offers a comprehensive and systematic overview of PEDOT:PSS, covering synthesis strategies, performance optimization, composite system design, and processing techniques across various material forms, including aqueous dispersions, powders, films, nanofibers, hydrogels, aerogels, elastomers, and sponges. It also discusses the specific requirements, current status, and ongoing challenges in both laboratory research and industrial applications. In light of recent advances in flexible, wearable, and multifunctionally integrated electronics, this review outlines future development directions with an emphasis on miniaturization and environmental sustainability. Particular attention is given to emerging applications in flexible, wearable, biomedical, and intelligent electronics, aiming to provide researchers with critical insights to inspire innovation at the frontiers of this rapidly evolving field.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"18 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Ren , Xiangyi Wang , Pan Sun , Mengqi Ge , Wenwen Han , Xinyuan Zhu
{"title":"Multi-mechanism polymerization as a promising tool for polymer synthesis","authors":"Ning Ren , Xiangyi Wang , Pan Sun , Mengqi Ge , Wenwen Han , Xinyuan Zhu","doi":"10.1016/j.progpolymsci.2025.101988","DOIUrl":"10.1016/j.progpolymsci.2025.101988","url":null,"abstract":"<div><div>The properties and applications of polymeric materials are closely related to the composition and architecture of the polymer chain, which is primarily realized by the chemical bonds formed during the polymerization process. Due to the selectivity of typical polymerizations, constructing different types of chemical bonds usually requires different mechanisms. For this reason, multi-mechanism polymerization is a commonly used technique. However, due to the complex nature of chemical reactions, different mechanisms could affect each other. Incorporating multiple mechanisms in a single polymerization requires the elaborate design of the synthetic route and rational arrangement of the reaction sequence. Considering the importance of multi-mechanism polymerization for polymer synthesis, the scope of this review is to summarize the research progress on multi-mechanism polymerization. Because the number of publications using stepwise, sequential polymerizations is much more than those with simultaneous polymerizations, this review focuses primarily on the latter type with a brief summary of the former. Polymerization mechanisms and their combinations categorize multi-mechanism polymerizations. The mutual interactions between different mechanisms are discussed before summarizing and highlighting the published works during recent years. A perspective on the mechanistic and kinetic relationship between multi-mechanism polymerizations and their single-mechanism polymerization counterparts is also afforded in this review.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101988"},"PeriodicalIF":26.0,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moein Mohammadi-Jorjafki , Milad Babazadeh-Mamaqani , Reza Khalilzadeh , Hossein Roghani-Mamaqani , Richard Hoogenboom , Feng Wang
{"title":"Multimode anticounterfeiting materials based on polymers and supramolecular chemistry","authors":"Moein Mohammadi-Jorjafki , Milad Babazadeh-Mamaqani , Reza Khalilzadeh , Hossein Roghani-Mamaqani , Richard Hoogenboom , Feng Wang","doi":"10.1016/j.progpolymsci.2025.101986","DOIUrl":"10.1016/j.progpolymsci.2025.101986","url":null,"abstract":"<div><div>The combination of polymer science and supramolecular chemistry has emerged as a promising exploration platform in developing dynamic and responsive materials. The synergy of non-covalent supramolecular chemistry with macromolecular covalent chemistry has opened up advanced applications in the sensing and anticounterfeiting fields. Such supramolecular interactions include hydrogen bonding, host-guest interactions, metal coordination and electrostatic interactions, donor-acceptor, and π-π stacking. Since many supramolecular self-assembling systems lead to a change in absorption or emission behavior of the involved supramolecular units, the combination of polymers with such supramolecular motifs provides a powerful platform for sensing, information storage, and anticounterfeiting applications. Considering that counterfeiting tactics continue to change, the need for multimode anticounterfeiting systems with diverse color and time dimensions as dynamic anticounterfeiting technology is indispensable. Due to the high need for multimode anticounterfeiting materials for nations, governments, suppliers, and customers, it is highly promising to use reversible, dynamic supramolecular structures in combination with polymers that provide good processability and materials properties. This review article provides an overview of the design and application of polymer materials with embedded supramolecular interactions as innovative multimodal anticounterfeiting materials.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101986"},"PeriodicalIF":26.0,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soonho Jang , Myeong-Hwa Ryou , Ji-Youn Bae , Seung-Ho Yu , Sang-Young Lee , Joona Bang
{"title":"Polymeric chemistry design for battery electrode binders","authors":"Soonho Jang , Myeong-Hwa Ryou , Ji-Youn Bae , Seung-Ho Yu , Sang-Young Lee , Joona Bang","doi":"10.1016/j.progpolymsci.2025.101987","DOIUrl":"10.1016/j.progpolymsci.2025.101987","url":null,"abstract":"<div><div>Polymer binders are essential for battery electrode stability, ensuring adhesion and cohesion, facilitating active material dispersion, and providing mechanical resilience against cycling-induced stresses. However, conventional binders such as poly(vinylidene fluoride) and carboxymethyl cellulose/styrene-butadiene rubber, which are widely used in lithium-ion battery electrodes, struggle to meet these functional requirements, particularly in high-capacity and high-voltage electrodes. These limitations affect electrochemical performance, cycle life, and manufacturability, necessitating a new paradigm in battery design. Recent advances in polymer chemistry and molecular engineering have enabled the development of functional binders that offer improved mechanical properties, interfacial stability, and electrochemical compatibility. This review comprehensively examines binder design approaches, emphasizing quantitative structure–property relationships to provide a predictive framework for rational binder engineering. Key focus areas include adhesion and cohesion, dispersion stability, mechanical strength, and electrochemical stability, alongside emerging functionalities such as ionic/electrical conductivity, electrolyte compatibility, and flame retardance. By integrating multi-scale engineering approaches with case studies on silicon anodes, nickel-rich cathodes, dry-processed electrodes, and emerging electrodes, this review presents a strategic roadmap for the innovation of next-generation binder. The insights presented herein offer a scientifically grounded, application-driven framework for the development of scalable, high-performance, and sustainable binder technologies that will shape the future of advanced battery materials.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101987"},"PeriodicalIF":26.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144219351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emulsion templating: DIY versatility for the creative design of macroporous polymers","authors":"Samah Saied-Ahmad, Michael S. Silverstein","doi":"10.1016/j.progpolymsci.2025.101970","DOIUrl":"10.1016/j.progpolymsci.2025.101970","url":null,"abstract":"<div><div>Porous polymers are of interest for a wide variety of applications including absorption, adsorption, tissue engineering, membranes, controlled release, reaction supports, and shape memory foams. Emulsion templating can be used to generate high-porosity, macroporous polymer monoliths with highly interconnected, micrometer-scale porous structures through polymerization in the external, continuous phase followed by removal of the internal, dispersed phase. Emulsion templating possesses, on one hand, the benefit of being seemly simple. This simplicity, however, belies its inherent versatility and considerable parameter space that enables creative design of innovative new materials in terms of their macromolecular structures, their porous structures, and their properties. As described here, approaching emulsion templating with a specific structure or application in mind can enable a do-it-yourself outlook to imaginatively selecting the most appropriate emulsion type, stabilization strategy, polymerization mechanism, crosslinking strategy, and post-synthesis modification. The research and development of emulsion-templated polymers has been blossoming, as reflected not only in the number of articles published, but also in the number of novel porous polymer materials synthesized and in the number of heretofore unexplored applications investigated. It is the hidden complexity of emulsion templating that enables a continuous stream of pioneering works stemming from breakthrough insights in connected and contiguous scientific fields. This appraisal, highlighting emulsion templating strategies, will serve as a guide for those involved in developing innovative polymers with unique macromolecular and porous structures that engender exceptional properties. Contemplating the future directions of emulsion templating, given the robust nature of its established foundation, suggests that innovative research and development will continue to flourish.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"165 ","pages":"Article 101970"},"PeriodicalIF":26.0,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144067273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel MacKinnon, Magdalena Godzina, C. Remzi Becer
{"title":"Baroplastics – The future of low temperature plastic processing","authors":"Daniel MacKinnon, Magdalena Godzina, C. Remzi Becer","doi":"10.1016/j.progpolymsci.2025.101967","DOIUrl":"10.1016/j.progpolymsci.2025.101967","url":null,"abstract":"<div><div>While global annual plastic production has surpassed 400 million tons, the rate of plastic recycling remains below 10 %. Recycling rates for conventional thermoplastics remain low, largely due to the harsh conditions required for high-temperature melt-molding. These conditions promote thermo-oxidative reactions and chain scission, causing significant deterioration of polymer chains and reducing the recyclability of these materials. Additionally, the sustainability of this process is compromised by its high energy demands and harmful environmental impacts. Baroplastics provide an alternative recycling pathway that involves the use of low-temperature processing under pressure; a novel class of sustainable polymers that leverages their unique pressure-responsive properties to enable recycling at markedly reduced energy consumption and CO<sub>2</sub> emissions. Baroplastics rely on order-to-disorder transitions (ODTs), typically of block copolymers (BCPs), that allow for a rheological transition from an ordered solid to a disordered liquid-like state that can flow and be molded. Once pressure is removed, the liquid-like state returns to its original solid form with no observed degradation of the polymeric chains. In this review, we introduce the concept of baroplastics and explore the mechanisms that underpin their distinctive ability to flow under pressure for sustainable recycling. We discuss the technological and environmental advantages of baromechanical recycling, the potential for future implementation within industry, and the use of baroplastics in nanocomposites and biological systems. Moreover, we have thoroughly reviewed the scope, modelling, and synthesis of baroplastic materials to produce a guide to this growing field.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"165 ","pages":"Article 101967"},"PeriodicalIF":26.0,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143933095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Habets , Bruno Grignard , Christophe Detrembleur
{"title":"Non-isocyanate polyurethanes at room temperature – a dream becoming reality","authors":"Thomas Habets , Bruno Grignard , Christophe Detrembleur","doi":"10.1016/j.progpolymsci.2025.101968","DOIUrl":"10.1016/j.progpolymsci.2025.101968","url":null,"abstract":"<div><div>Polyurethanes (PUs) are one of the most widely utilized classes of polymers worldwide. However, their conventional production relies on toxic and hazardous isocyanate compounds whose usage is being limited by recent regulations. This has driven the development of new chemical strategies to access non-isocyanate PUs, or NIPUs. While the traditional PU synthesis typically occurs at room temperature (r.T) due to the high reactivity of isocyanates, NIPU synthesis generally requires elevated temperatures to surpass the low reactivity of the precursors. Considering societal needs and regulatory changes, achieving NIPU synthesis at r.T could reduce the energy footprint of the process, facilitate transition to NIPUs within existing PU manufacturing facilities and in consumer-grade applications – a more seamless switch from PUs to NIPUs. Additionally, r.T reactions are desirable for minimizing side reactions and enabling a wider functional group tolerance. This review critically gathers unbridged data and recent strategies aimed at achieving NIPU synthesis at r.T. This includes advances in monomer design, catalysis, and the use of r.T-efficient hybrid chemistries. Various polymerization techniques from a wide diversity of precursors are discussed, along with the advantages and limitations of each approach.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"165 ","pages":"Article 101968"},"PeriodicalIF":26.0,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143931100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinghao Li , Eric Drockenmuller , Pierre Stiernet , Weiyi Zhang , Jiayin Yuan
{"title":"Poly(1,2,4-triazolium)s as the rising generation of functional poly(ionic liquid)s","authors":"Xinghao Li , Eric Drockenmuller , Pierre Stiernet , Weiyi Zhang , Jiayin Yuan","doi":"10.1016/j.progpolymsci.2025.101969","DOIUrl":"10.1016/j.progpolymsci.2025.101969","url":null,"abstract":"<div><div>This article reviews the research field of poly(1,2,4-triazolium)s as a rising subclass of poly(ionic liquid)s. In comparison to previously studied polyimidazoliums and poly(1,2,3-triazolium)s, we highlight the unique structural features associated with the hydrogen bonds, the lone-pair interactions on the nitrogen atom at ring position 4 (N4) and the capacity to form polycarbenes. Though the chemical structures and the synthetic routes are alike, these features allow poly(1,2,4-triazolium)s to be distinct from other groups of poly(ionic liquid)s in terms of physical and chemical properties, supramolecular chemistry and applications. The challenges in the further development of poly(1,2,4-triazolium)s are discussed, including the scalability in synthesis and in-depth study of their properties for cutting-edge applications.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"165 ","pages":"Article 101969"},"PeriodicalIF":26.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143931099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shun Zhang , Xuan Zhao , Xuehui Liu , Lin Chen , Lan Bai , Shimei Xu , Yu-Zhong Wang
{"title":"Chemical depolymerization of polyethylene terephthalate and its blends: Enhanced strategies for efficient circularity","authors":"Shun Zhang , Xuan Zhao , Xuehui Liu , Lin Chen , Lan Bai , Shimei Xu , Yu-Zhong Wang","doi":"10.1016/j.progpolymsci.2025.101958","DOIUrl":"10.1016/j.progpolymsci.2025.101958","url":null,"abstract":"<div><div>Polyethylene terephthalate (PET), the most widely used polyester, is extensively employed in packaging and textiles. However, the inherent complexity of PET waste streams lead to low recycling rate. Chemical recycling offers a promising solution to restore the wastes to monomers or convert them into high-value products. This review summarizes the recent advances on chemical recycling of PET, focusing on enhanced depolymerization strategies throughout the whole reaction system including solvent effect, catalytic effect and energy input mode. The enhancement mechanism is described. In addition, consideration on recycling of PET blends is demonstrated. An outlook for further advances on chemical recycling of PET is proposed.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"164 ","pages":"Article 101958"},"PeriodicalIF":26.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}