Huan Tan , Xiaolan Li , Linlong Li , Xue Bai , Jing You , Yuanyuan Zhou , Shirun Chu , Xiao Huang , Qiaoli Wu , Jie Weng , Jun Li
{"title":"Recent advances in the design of hydrogels: Renaissance of the Hofmeister effect","authors":"Huan Tan , Xiaolan Li , Linlong Li , Xue Bai , Jing You , Yuanyuan Zhou , Shirun Chu , Xiao Huang , Qiaoli Wu , Jie Weng , Jun Li","doi":"10.1016/j.progpolymsci.2025.101989","DOIUrl":null,"url":null,"abstract":"<div><div>The Hofmeister effect has been known for >135 years since Hofmeister and Lewith’s foundational work. Over the past decade, salt treatment induced by the Hofmeister effect in concentrated gelator molecules has attracted considerable interest in designing functional hydrogels without any complicated chemical modifications. Herein, we provide a detailed overview of recent advances in using the Hofmeister effect to regulate the properties of hydrogels, from the perspective of fundamental theories to applications. This review comprehensively emphasizes the main interactions or effects related to specific ions influencing the performance of pre-gel solutions for hydrogel formation. Moreover, this review focuses on the roles of salt ions in regulating the properties and functionalities of hydrogels, including mechanical properties, ionic conductivity, anti-freezing capability, optical properties, printability, analytical sensitivity, and shape memory ability. Additionally, we provide an overview of the potential applications of these hydrogels in various fields. Finally, this review highlights the challenges and opportunities of this approach and proposes potential issues for understanding the Hofmeister effect in designing functional hydrogels. The broad scale and versatility of this approach make it a promising strategy for developing task-specific hydrogels with customized properties and functionalities.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101989"},"PeriodicalIF":26.1000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670025000681","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Hofmeister effect has been known for >135 years since Hofmeister and Lewith’s foundational work. Over the past decade, salt treatment induced by the Hofmeister effect in concentrated gelator molecules has attracted considerable interest in designing functional hydrogels without any complicated chemical modifications. Herein, we provide a detailed overview of recent advances in using the Hofmeister effect to regulate the properties of hydrogels, from the perspective of fundamental theories to applications. This review comprehensively emphasizes the main interactions or effects related to specific ions influencing the performance of pre-gel solutions for hydrogel formation. Moreover, this review focuses on the roles of salt ions in regulating the properties and functionalities of hydrogels, including mechanical properties, ionic conductivity, anti-freezing capability, optical properties, printability, analytical sensitivity, and shape memory ability. Additionally, we provide an overview of the potential applications of these hydrogels in various fields. Finally, this review highlights the challenges and opportunities of this approach and proposes potential issues for understanding the Hofmeister effect in designing functional hydrogels. The broad scale and versatility of this approach make it a promising strategy for developing task-specific hydrogels with customized properties and functionalities.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.