Ning Ren , Xiangyi Wang , Pan Sun , Mengqi Ge , Wenwen Han , Xinyuan Zhu
{"title":"Multi-mechanism polymerization as a promising tool for polymer synthesis","authors":"Ning Ren , Xiangyi Wang , Pan Sun , Mengqi Ge , Wenwen Han , Xinyuan Zhu","doi":"10.1016/j.progpolymsci.2025.101988","DOIUrl":null,"url":null,"abstract":"<div><div>The properties and applications of polymeric materials are closely related to the composition and architecture of the polymer chain, which is primarily realized by the chemical bonds formed during the polymerization process. Due to the selectivity of typical polymerizations, constructing different types of chemical bonds usually requires different mechanisms. For this reason, multi-mechanism polymerization is a commonly used technique. However, due to the complex nature of chemical reactions, different mechanisms could affect each other. Incorporating multiple mechanisms in a single polymerization requires the elaborate design of the synthetic route and rational arrangement of the reaction sequence. Considering the importance of multi-mechanism polymerization for polymer synthesis, the scope of this review is to summarize the research progress on multi-mechanism polymerization. Because the number of publications using stepwise, sequential polymerizations is much more than those with simultaneous polymerizations, this review focuses primarily on the latter type with a brief summary of the former. Polymerization mechanisms and their combinations categorize multi-mechanism polymerizations. The mutual interactions between different mechanisms are discussed before summarizing and highlighting the published works during recent years. A perspective on the mechanistic and kinetic relationship between multi-mechanism polymerizations and their single-mechanism polymerization counterparts is also afforded in this review.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"166 ","pages":"Article 101988"},"PeriodicalIF":26.0000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967002500067X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The properties and applications of polymeric materials are closely related to the composition and architecture of the polymer chain, which is primarily realized by the chemical bonds formed during the polymerization process. Due to the selectivity of typical polymerizations, constructing different types of chemical bonds usually requires different mechanisms. For this reason, multi-mechanism polymerization is a commonly used technique. However, due to the complex nature of chemical reactions, different mechanisms could affect each other. Incorporating multiple mechanisms in a single polymerization requires the elaborate design of the synthetic route and rational arrangement of the reaction sequence. Considering the importance of multi-mechanism polymerization for polymer synthesis, the scope of this review is to summarize the research progress on multi-mechanism polymerization. Because the number of publications using stepwise, sequential polymerizations is much more than those with simultaneous polymerizations, this review focuses primarily on the latter type with a brief summary of the former. Polymerization mechanisms and their combinations categorize multi-mechanism polymerizations. The mutual interactions between different mechanisms are discussed before summarizing and highlighting the published works during recent years. A perspective on the mechanistic and kinetic relationship between multi-mechanism polymerizations and their single-mechanism polymerization counterparts is also afforded in this review.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.