{"title":"Sequence-defined polymers for biomedical applications","authors":"Nicholas Jäck , Sören Nagel , Laura Hartmann","doi":"10.1016/j.progpolymsci.2025.101993","DOIUrl":null,"url":null,"abstract":"<div><div>Sequence-defined polymers offer unparalleled structural precision, enabling tailored biological interactions, enhanced stability, and optimized function. Unlike traditional synthetic polymers, which often lack defined structures, these materials allow for precise tuning of molecular interactions to improve biomedical performance. This review surveys advancements over the past decade, covering foundational studies that elucidate sequence-function relationships - such as interactions with model lectins - as well as direct biomedical applications including nucleotide delivery, lectin and protein inhibition, antibacterial and antiviral strategies, tumor therapy, and bioimaging. The control over polymer sequences is crucial for enhancing specificity, reducing off-target effects, and improving stability in physiological environments.</div><div>By comparing sequence-defined polymers with natural biopolymers and conventional synthetic materials, we highlight their advantages in addressing challenges like immune recognition, enzymatic degradation, and suboptimal pharmacokinetics. These materials present new avenues for developing targeted therapies, precision drug delivery systems, and advanced biomaterials.</div><div>Distinguishing itself from previous reviews focused on synthetic methodologies, this work emphasizes how sequence precision impacts biological function and thus potential biomedical applications. By summarizing foundational examples, recent breakthroughs and key challenges, we provide insights into the pivotal role of sequence-defined macromolecules in shaping the next generation of bioactive materials.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"167 ","pages":"Article 101993"},"PeriodicalIF":26.0000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670025000723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sequence-defined polymers offer unparalleled structural precision, enabling tailored biological interactions, enhanced stability, and optimized function. Unlike traditional synthetic polymers, which often lack defined structures, these materials allow for precise tuning of molecular interactions to improve biomedical performance. This review surveys advancements over the past decade, covering foundational studies that elucidate sequence-function relationships - such as interactions with model lectins - as well as direct biomedical applications including nucleotide delivery, lectin and protein inhibition, antibacterial and antiviral strategies, tumor therapy, and bioimaging. The control over polymer sequences is crucial for enhancing specificity, reducing off-target effects, and improving stability in physiological environments.
By comparing sequence-defined polymers with natural biopolymers and conventional synthetic materials, we highlight their advantages in addressing challenges like immune recognition, enzymatic degradation, and suboptimal pharmacokinetics. These materials present new avenues for developing targeted therapies, precision drug delivery systems, and advanced biomaterials.
Distinguishing itself from previous reviews focused on synthetic methodologies, this work emphasizes how sequence precision impacts biological function and thus potential biomedical applications. By summarizing foundational examples, recent breakthroughs and key challenges, we provide insights into the pivotal role of sequence-defined macromolecules in shaping the next generation of bioactive materials.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.