Discreteness and dispersity in the design of polymeric materials

IF 26 1区 化学 Q1 POLYMER SCIENCE
Alessio Lo Bocchiaro, Carlos Pavón, Francesca Lorandi, Edmondo M. Benetti
{"title":"Discreteness and dispersity in the design of polymeric materials","authors":"Alessio Lo Bocchiaro,&nbsp;Carlos Pavón,&nbsp;Francesca Lorandi,&nbsp;Edmondo M. Benetti","doi":"10.1016/j.progpolymsci.2025.101992","DOIUrl":null,"url":null,"abstract":"<div><div>Nature produces macromolecules with discrete molar mass and precise composition, both of which are essential for ensuring structural control, distinctive properties, and specific functions. However, in some cases, bioderived components are heterogeneous in size, and this plays a crucial role in defining their physicochemical characteristics. In a similar way, polymer scientists have been striving to develop robust synthetic protocols to access macromolecules with homogeneous composition and discrete molar mass. Simultaneously, significant advances in controlled polymerization techniques have enabled the precise regulation of chain length heterogeneity, or dispersity (<em>Đ</em>), across a wide range of values. Achieving perfectly monodisperse polymers is not only a remarkable synthetic achievement but also provides fundamental building blocks for new classes of polymeric materials. These materials could be either free of defects or exhibit properties that are precisely tunable in a quantized manner. On the other hand, obtaining polymer samples with controlled dispersity provides an additional tuning parameter for the physicochemical properties of a variety of materials formulations. By leveraging macromolecular discreteness and fine-tuning polymer dispersity, we have expanded the toolbox for designing advanced “soft” materials. Block copolymers with discrete segment lengths or controlled dispersity can be used to create novel nanostructured materials. Stimuli-responsive polymeric systems can be engineered to precisely adjust their physical transitions while maintaining a constant chemical composition. In addition, tailoring polymer dispersity during the fabrication of gels and brush coatings enhances the ability to fine-tune their physicochemical properties, further broadening their potential applications.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"167 ","pages":"Article 101992"},"PeriodicalIF":26.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670025000711","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nature produces macromolecules with discrete molar mass and precise composition, both of which are essential for ensuring structural control, distinctive properties, and specific functions. However, in some cases, bioderived components are heterogeneous in size, and this plays a crucial role in defining their physicochemical characteristics. In a similar way, polymer scientists have been striving to develop robust synthetic protocols to access macromolecules with homogeneous composition and discrete molar mass. Simultaneously, significant advances in controlled polymerization techniques have enabled the precise regulation of chain length heterogeneity, or dispersity (Đ), across a wide range of values. Achieving perfectly monodisperse polymers is not only a remarkable synthetic achievement but also provides fundamental building blocks for new classes of polymeric materials. These materials could be either free of defects or exhibit properties that are precisely tunable in a quantized manner. On the other hand, obtaining polymer samples with controlled dispersity provides an additional tuning parameter for the physicochemical properties of a variety of materials formulations. By leveraging macromolecular discreteness and fine-tuning polymer dispersity, we have expanded the toolbox for designing advanced “soft” materials. Block copolymers with discrete segment lengths or controlled dispersity can be used to create novel nanostructured materials. Stimuli-responsive polymeric systems can be engineered to precisely adjust their physical transitions while maintaining a constant chemical composition. In addition, tailoring polymer dispersity during the fabrication of gels and brush coatings enhances the ability to fine-tune their physicochemical properties, further broadening their potential applications.

Abstract Image

Abstract Image

高分子材料设计中的离散性与分散性
大自然产生的大分子具有离散的摩尔质量和精确的组成,这两者对于确保结构控制、独特性质和特定功能都是必不可少的。然而,在某些情况下,生物衍生成分在尺寸上是不均匀的,这在确定其物理化学特性方面起着至关重要的作用。类似地,聚合物科学家一直在努力开发强大的合成方案,以获得具有均匀组成和离散摩尔质量的大分子。同时,控制聚合技术的重大进展已经能够精确调节链长非均质性或分散性(Đ),范围很广。实现完美的单分散聚合物不仅是一项了不起的合成成就,而且为新型聚合物材料提供了基本的构建模块。这些材料要么没有缺陷,要么表现出以量子化方式精确可调的特性。另一方面,获得分散可控的聚合物样品为各种材料配方的物理化学性质提供了额外的调整参数。通过利用大分子的离散性和微调聚合物的分散性,我们已经扩展了设计先进“软”材料的工具箱。具有离散段长度或控制分散性的嵌段共聚物可用于制造新型纳米结构材料。刺激响应聚合物系统可以设计成精确地调整其物理转变,同时保持恒定的化学成分。此外,在凝胶和刷刷涂层的制造过程中,调整聚合物的分散性可以提高其物理化学性质的微调能力,进一步扩大其潜在的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信