{"title":"Thermoelectric materials and applications in buildings","authors":"Qi Sun, Chunyu Du, Guangming Chen","doi":"10.1016/j.pmatsci.2024.101402","DOIUrl":"10.1016/j.pmatsci.2024.101402","url":null,"abstract":"<div><div>Thermoelectric materials are functional materials that utilize the movements of charge carriers to achieve the direct interconversions between heat and electricity. Recently, high-performance thermoelectric materials and multifunctional devices have witnessed explosive progresses to alleviate energy burdens. As the energy consumption in buildings continues to increase, the integration of thermoelectric materials with buildings provides a promising solution to improve the energy utilization efficiency. However, despite the rapid progress in thermoelectric technology, there remains a scarcity of comprehensive reviews and systematic assessments focused on the integration and applications of thermoelectric materials in building environments. This timely paper provides a thorough introduction to the research landscape, encompassing applications of thermoelectric materials, a brief historical overview of building technologies, and recent research trends in thermoelectric materials pertinent to buildings. We systematically elucidate the principles of thermoelectric materials and outlines the specific properties required for their application across various building components. Following this, the focus is on representative thermoelectric materials across four critical domains: energy harvesting, building cooling, temperature monitoring, and corrosion prevention. The discussion is structured according to the positioning and functional roles of devices integrated within buildings. Finally, we summarize the key findings and underscore the challenges and the future prospects for thermoelectric materials and devices in building applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"149 ","pages":"Article 101402"},"PeriodicalIF":33.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulong Fan , Qingping Wang , Yingying Xie , Naigen Zhou , Yang Yang , Yichun Ding , Yen Wei , Guoxing Qu
{"title":"Advances in aqueous zinc-ion battery systems: Cathode materials and chemistry","authors":"Yulong Fan , Qingping Wang , Yingying Xie , Naigen Zhou , Yang Yang , Yichun Ding , Yen Wei , Guoxing Qu","doi":"10.1016/j.pmatsci.2024.101393","DOIUrl":"10.1016/j.pmatsci.2024.101393","url":null,"abstract":"<div><div>Renewable energy has been extensively developed to curb the greenhouse effect and reduce carbon dioxide emissions. Nevertheless, their applications are greatly limited due to the intermittence and instability nature. Therefore, reasonably store and distribution of new energy have become a widespread concern. Among various energy storage technologies, lithium-ion battery technology has achieved great success, but the scarcity of lithium resources and the use of toxic and flammable organic electrolytes have limited its further development. Oppositely, aqueous zinc ion batteries (AZIBs) have advantages of safety, abundant resources, low cost, and the potential to store energy at the power plant level. However, the low capacity, poor cycle stability, and low voltage of cathode materials have become one of the limiting factors for the application of AZIBs. Herein, we systematically summarize and discuss the reported cathode materials, including manganese-based oxides, vanadium-based compounds, Prussian blue analogues, organics, MXenes, transition metal chalcogenides, layered double hydroxides, and others. Their developments, challenges, and feasible modification strategies are thoroughly analyzed. In addition, we also summarize and compare the proposed energy storage mechanisms of cathode materials. Finally, we propose potential research directions in the future for cathode materials, and provide essential guidance for the development of high-performance AZIBs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"149 ","pages":"Article 101393"},"PeriodicalIF":33.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zongfu Sun , Huawei Liu , Wen Li , Ning Zhang , Shan Zhu , Biao Chen , Fang He , Naiqin Zhao , Chunnian He
{"title":"Advanced hard carbon materials for practical applications of sodium-ion batteries developed by combined experimental, computational, and data analysis approaches","authors":"Zongfu Sun , Huawei Liu , Wen Li , Ning Zhang , Shan Zhu , Biao Chen , Fang He , Naiqin Zhao , Chunnian He","doi":"10.1016/j.pmatsci.2024.101401","DOIUrl":"10.1016/j.pmatsci.2024.101401","url":null,"abstract":"<div><div>Hard carbon materials are considered one of the ideal anode materials for sodium-ion batteries (SIBs). However, the practical application of hard carbon materials is limited by complex microstructures and imprecise preparation techniques. On the one hand, advanced hard carbon materials are widely developed through computational simulations and experimental research. On the other hand, the emerging database of precursors − preparation parameters − microstructures − and electrochemical performance has grown fast as more and more research has been reported. The database is greatly beneficial to reducing the trial-and-error nature of the experiments and verifying the reliability of the computational results. In this review, we summarize the rapid development of high-performance hard carbon materials by combining experimental, computational, and data analysis approaches. Focusing on: 1) summarizing the types of precursors and preparation methods to search the development of highly promising precursors and efficient preparation methods, 2) discussing the evolution rule of microstructure parameters and elucidating the correspondence between microstructures and sodium storage mechanisms, 3) revealing the relationship between microstructure characteristics and electrochemical performance of hard carbon, and 4) summarizing the utility potential of various modification strategies on hard carbon. Finally, we outline the main advances and future perspectives of hard carbon in SIBs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"149 ","pages":"Article 101401"},"PeriodicalIF":33.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David A. Winkler , Anthony E. Hughes , Can Özkan , Arjan Mol , Tim Würger , Christian Feiler , Dawei Zhang , Sviatlana V. Lamaka
{"title":"Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corrosion inhibitors","authors":"David A. Winkler , Anthony E. Hughes , Can Özkan , Arjan Mol , Tim Würger , Christian Feiler , Dawei Zhang , Sviatlana V. Lamaka","doi":"10.1016/j.pmatsci.2024.101392","DOIUrl":"10.1016/j.pmatsci.2024.101392","url":null,"abstract":"<div><div>The targeted removal of efficient but toxic corrosion inhibitors based on hexavalent chromium has provided an impetus for discovery of new, more benign organic compounds to fill that role. Developments in high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, the increased capabilities of machine learning (ML) methods, and a better understanding of mechanisms of inhibition provide the potential to make discovery of new corrosion inhibitors faster and cheaper than ever before. These technical developments in the corrosion inhibition field are summarized herein. We describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. The literature on inhibition mechanisms is briefly summarized along with quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these methods provides a paradigm for the rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys, in diverse environments. A comprehensive list of corrosion inhibitors tested for various substrates that was curated as part of this review is accessible online <span><span>https://excorr.web.app/database</span><svg><path></path></svg></span> and available in a machine-readable format.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"149 ","pages":"Article 101392"},"PeriodicalIF":33.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathalie Bock , Martina Delbianco , Michaela Eder , Richard Weinkamer , Shahrouz Amini , Cecile M. Bidan , Amaia Cipitria , Shaun P. Collin , Larisa M. Haupt , Jacqui McGovern , Flavia Medeiros Savi , Yi-Chin Toh , Dietmar W. Hutmacher , Peter Fratzl
{"title":"A materials science approach to extracellular matrices","authors":"Nathalie Bock , Martina Delbianco , Michaela Eder , Richard Weinkamer , Shahrouz Amini , Cecile M. Bidan , Amaia Cipitria , Shaun P. Collin , Larisa M. Haupt , Jacqui McGovern , Flavia Medeiros Savi , Yi-Chin Toh , Dietmar W. Hutmacher , Peter Fratzl","doi":"10.1016/j.pmatsci.2024.101391","DOIUrl":"10.1016/j.pmatsci.2024.101391","url":null,"abstract":"<div><div>Extracellular matrices (ECMs) are foundational to all biological systems and naturally evolved as an intersection between living systems and active materials. Despite extensive study, research on ECMs often overlooks their structural material complexity and systemic roles. This Perspective argues for a holistic examination of ECMs from a materials science viewpoint, emphasizing their highly variable compositions, multiscale organizations, dynamic changes of mechanical properties, and fluid interactions. By transcending taxonomic and environmental boundaries, we aim to reveal underlying principles governing architectures, functions and adaptations of ECMs, with a focus on animal, plant and biofilm ECMs. Highlighting the role of water in ECM composition and function, and road-mapping the technical challenges in characterizing these complex materials, we propose an interdisciplinary framework to advance our understanding and application of ECMs across multiple scientific fields. Key focus areas include specimen preparation, multiscale analysis, and multimethod approaches. The optimization of specimen preparation first enables us meeting both biological and experimental conditions. The use of techniques that bridge the multiscale nature of ECMs is next, followed by integration of multiple techniques that are both position- and time-resolved, including structural and spectroscopic imaging. Such a coordinated approach promises not only to enrich our knowledge of biological systems but also to encourage the development of innovative bioinspired materials, with transformative implications across environmental science, health, and biotechnology.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"149 ","pages":"Article 101391"},"PeriodicalIF":33.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiongfang Liu , Kaijian Xing , Chi Sin Tang , Shuo Sun , Pan Chen , Dong-Chen Qi , Mark B.H. Breese , Michael S. Fuhrer , Andrew T.S. Wee , Xinmao Yin
{"title":"Contact resistance and interfacial engineering: Advances in high-performance 2D-TMD based devices","authors":"Xiongfang Liu , Kaijian Xing , Chi Sin Tang , Shuo Sun , Pan Chen , Dong-Chen Qi , Mark B.H. Breese , Michael S. Fuhrer , Andrew T.S. Wee , Xinmao Yin","doi":"10.1016/j.pmatsci.2024.101390","DOIUrl":"10.1016/j.pmatsci.2024.101390","url":null,"abstract":"<div><div>The development of advanced electronic devices is contingent upon sustainable material development and pioneering research breakthroughs. Traditional semiconductor-based electronic technology faces constraints in material thickness scaling and energy efficiency. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as promising candidates for next-generation nanoelectronics and optoelectronic applications, boasting high electron mobility, mechanical strength, and a customizable band gap. Despite these merits, the Fermi level pinning effect introduces uncontrollable Schottky barriers at metal–2D-TMD contacts, challenging prediction through the Schottky-Mott rule. These barriers fundamentally lead to elevated contact resistance and limited current-delivery capability, impeding the enhancement of 2D-TMD transistor and integrated circuit properties. In this review, we succinctly outline the Fermi level pinning effect mechanism and peculiar contact resistance behavior at metal/2D-TMD interfaces. Subsequently, highlights on the recent advances in overcoming contact resistance in 2D-TMDs devices, encompassing interface interaction and hybridization, van der Waals (vdW) contacts, prefabricated metal transfer and charge-transfer doping will be addressed. Finally, the discussion extends to challenges and offers insights into future developmental prospects.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101390"},"PeriodicalIF":33.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing battery thermal management: Future directions and challenges in nano-enhanced phase change materials-Based systems","authors":"Mahendran Samykano","doi":"10.1016/j.pmatsci.2024.101388","DOIUrl":"10.1016/j.pmatsci.2024.101388","url":null,"abstract":"<div><div>The widespread adoption of lithium-ion (Li-ion) batteries in electric and hybrid vehicles has garnered significant attention due to their high energy density, impressive power-to-mass ratio, and extended lifespan. However, challenges like non-uniform temperature distribution, suboptimal energy storage, and slower release rates have surfaced. The rising incidents of battery explosions underscore the urgent need for a thorough understanding of Li-ion battery technology, particularly in thermal management. This knowledge is vital for maintaining batteries within an optimal temperature range, improving operational efficiency, and ensuring stability and safety. This review section meticulously explores critical aspects of battery thermal management, focusing on the process of heat generation and transfer within the cell and module. It also examines the thermal management challenges through active and passive techniques, emphasizing advancements in heat transfer methodologies. The investigation of integrating nano-enhanced phase change materials (NePCMs) with Li-ion batteries is particularly noteworthy as a promising approach to enhance thermal conductivity and management. The review comprehensively elaborates on the functions, strategies, emerging concerns, integration methodologies, and benefits of NePCMs, thoroughly examining their impact on thermal management. This comprehensive review anticipates advancements in this vital domain, envisioning development trends and prospects associated with the application of NePCMs in battery thermal management.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101388"},"PeriodicalIF":33.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance failure mechanisms and mitigation strategies of high-temperature proton exchange membrane fuel cells","authors":"Shufan Wang, Yun Zheng, Chenhui Xv, Haishan Liu, Lingfei Li, Wei Yan, Jiujun Zhang","doi":"10.1016/j.pmatsci.2024.101389","DOIUrl":"10.1016/j.pmatsci.2024.101389","url":null,"abstract":"<div><div>As one type of promising electrochemical technologies, high temperature proton exchange membrane fuel cells (HT-PEMFCs) have been widely recognized as the next-generation fuel cell technology for clean energy conversion due to their superiorities of fast electrochemical kinetics, simplified water management, good tolerance to feeding gas contaminants, low emission and high efficiency of energy conversion. However, performance failure during long-term operation still largely hinders their practical application. Accordingly, the explorations of advanced materials and structures, degradation mechanisms and mitigation strategies are attracting intensive attentions for promoting the progress of this technology. In addressing the timely update on the emerging progress regrading long-term durability of HT-PEMFCs, a comprehensive review summarizing the most recent developments of performance failure mechanisms and mitigation strategies for critical components of HT-PEMFCs is presented here. In this paper, the fundamentals involving basic reactions, main components, and development history are first summarized for fundamental understanding; then, the failure analysis and the corresponding mitigation strategies for critical components involving proton exchange membrane, catalytic layer, gas diffusion layer, bipolar plate, and thermal/water management systems are mainly emphasized. Furthermore, the technical challenges are analyzed and the further research directions are also proposed for overcoming the challenges toward practical application of HT-PEMFCs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101389"},"PeriodicalIF":33.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang Liu , Shun Li , Yunpeng Zheng , Min Xu , Hongyang Su , Xiang Miao , Yiqian Liu , Zhifang Zhou , Junlei Qi , Bingbing Yang , Di Chen , Ce-Wen Nan , Yuan-Hua Lin
{"title":"Advances in high entropy oxides: synthesis, structure, properties and beyond","authors":"Chang Liu , Shun Li , Yunpeng Zheng , Min Xu , Hongyang Su , Xiang Miao , Yiqian Liu , Zhifang Zhou , Junlei Qi , Bingbing Yang , Di Chen , Ce-Wen Nan , Yuan-Hua Lin","doi":"10.1016/j.pmatsci.2024.101385","DOIUrl":"10.1016/j.pmatsci.2024.101385","url":null,"abstract":"<div><div>The unique structural features of high entropy oxides (HEOs) offer opportunities for flexible and precise structure control, thereby fostering a broad spectrum of structure–property tuning. This review surveys the extensive research carried out on HEOs, from initial exploration to recent advancement, summarizing progress in the refinement of synthesis techniques, elucidation of the high entropy effect, and understanding of atomic structures at multiple scales. Leveraging the impact of high entropy effect on structures, HEOs exhibit a wide range of properties from thermal to electrical, which have potential applications in fields such as thermoelectrics, dielectrics, energy storage, lithium batteries, catalysis, magnetism and supercapacitors. The correlations between structure and property are analyzed, and potential property-property relations are examined. Finally, we underscore the key challenges and unresolved questions that future research needs to address.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101385"},"PeriodicalIF":33.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}