Yifan Wang , Ibrahim Mwamburi Mwakitawa , Hao Yang , Mingyu Song , Qian Huang , Xinzhe Li , Pengchi Zhang , Wei Fang , Lijun Hu , Yongli Zhou , Chen Li , Jianyong Ouyang , Kuan Sun
{"title":"Advancing ionic thermoelectric materials for heat recovery","authors":"Yifan Wang , Ibrahim Mwamburi Mwakitawa , Hao Yang , Mingyu Song , Qian Huang , Xinzhe Li , Pengchi Zhang , Wei Fang , Lijun Hu , Yongli Zhou , Chen Li , Jianyong Ouyang , Kuan Sun","doi":"10.1016/j.pmatsci.2025.101575","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic thermoelectrics (i-TEs) are emerging as a promising, sustainable technology for low-grade heat recovery, notable for their absence of moving mechanical parts. In recent years, significant advancements in i-TE materials and devices have been propelled by their advantages in thermal power generation, compatibility with room-temperature operation, and potential for integration into flexible, wearable devices. However, challenges remain to be addressed for practical future applications, primarily due to insufficient evaluations of innovative operational modes and materials. This review aims to bridge this gap by summarizing key existing theories and providing an in-depth analysis of ion migration mechanisms within i-TE capacitors. We also highlight significant contributions from leading studies, focusing on material selection, operational modes, performance characteristics, and pivotal discoveries. Ultimately, this review seeks to identify transformative approaches in i-TEs to foster innovative designs for practical applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"156 ","pages":"Article 101575"},"PeriodicalIF":40.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001537","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ionic thermoelectrics (i-TEs) are emerging as a promising, sustainable technology for low-grade heat recovery, notable for their absence of moving mechanical parts. In recent years, significant advancements in i-TE materials and devices have been propelled by their advantages in thermal power generation, compatibility with room-temperature operation, and potential for integration into flexible, wearable devices. However, challenges remain to be addressed for practical future applications, primarily due to insufficient evaluations of innovative operational modes and materials. This review aims to bridge this gap by summarizing key existing theories and providing an in-depth analysis of ion migration mechanisms within i-TE capacitors. We also highlight significant contributions from leading studies, focusing on material selection, operational modes, performance characteristics, and pivotal discoveries. Ultimately, this review seeks to identify transformative approaches in i-TEs to foster innovative designs for practical applications.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.