Jiaxin Wang , Yanling Yang , Jingeng Chen , Xiao-Lei Shi , Yu Sun , Xuefeng Tian , Hao Che , Yuefeng Chen , Zhi-Gang Chen
{"title":"Advanced fast-charging anode designs for sodium-ion batteries","authors":"Jiaxin Wang , Yanling Yang , Jingeng Chen , Xiao-Lei Shi , Yu Sun , Xuefeng Tian , Hao Che , Yuefeng Chen , Zhi-Gang Chen","doi":"10.1016/j.pmatsci.2025.101564","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) are emerging as a promising next-generation fast-charging technology due to their abundant raw resources, low cost, and low desolvation energy advantages that are especially beneficial under low-temperature conditions. However, achieving ultra-fast charging (i.e., charging times under 15 min) remains challenging. The kinetics of Na<sup>+</sup> ions are primarily hindered by Na<sup>+</sup> desolvation sluggish, restricted ion transport within the solid electrolyte interphase (SEI), and slow solid-state diffusion in the anode. Moreover, several fundamental challenges, such as significant volume changes during sodiation/desodiation and interfacial chemistry-induced side reactions, are further exacerbated. This review provides a comprehensive analysis of the key factors limiting the fast-charging capability of SIB anodes and outlines targeted optimization strategies, including bulk structure engineering, synergistic electrolyte design, and the controlled formation of favorable SEI layers. Representative case studies are presented to illustrate both the challenges and recent advances. Finally, this review presents future perspectives and potential pathways to guide the rational design of advanced fast-charging anode materials for SIBs.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"156 ","pages":"Article 101564"},"PeriodicalIF":40.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001422","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries (SIBs) are emerging as a promising next-generation fast-charging technology due to their abundant raw resources, low cost, and low desolvation energy advantages that are especially beneficial under low-temperature conditions. However, achieving ultra-fast charging (i.e., charging times under 15 min) remains challenging. The kinetics of Na+ ions are primarily hindered by Na+ desolvation sluggish, restricted ion transport within the solid electrolyte interphase (SEI), and slow solid-state diffusion in the anode. Moreover, several fundamental challenges, such as significant volume changes during sodiation/desodiation and interfacial chemistry-induced side reactions, are further exacerbated. This review provides a comprehensive analysis of the key factors limiting the fast-charging capability of SIB anodes and outlines targeted optimization strategies, including bulk structure engineering, synergistic electrolyte design, and the controlled formation of favorable SEI layers. Representative case studies are presented to illustrate both the challenges and recent advances. Finally, this review presents future perspectives and potential pathways to guide the rational design of advanced fast-charging anode materials for SIBs.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.