Progress in Materials Science最新文献

筛选
英文 中文
Effects of build orientation and inclined features on physical, microstructural and mechanical properties of powder bed fusion additively manufactured metallic parts 构建方向和倾斜特征对粉末床熔融快速成型金属零件的物理、微观结构和机械性能的影响
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-25 DOI: 10.1016/j.pmatsci.2024.101357
Ivan Aiza , Chiara Baldi , Federico Matías de la Vega , Sara Sebastiani , Niccolò Enrico Veronese , Mohammad Yousefi , Mohammad Hossein Mosallanejad , Erfan Maleki , Mario Guagliano , Luca Iuliano , Abdollah Saboori , Sara Bagherifard
{"title":"Effects of build orientation and inclined features on physical, microstructural and mechanical properties of powder bed fusion additively manufactured metallic parts","authors":"Ivan Aiza ,&nbsp;Chiara Baldi ,&nbsp;Federico Matías de la Vega ,&nbsp;Sara Sebastiani ,&nbsp;Niccolò Enrico Veronese ,&nbsp;Mohammad Yousefi ,&nbsp;Mohammad Hossein Mosallanejad ,&nbsp;Erfan Maleki ,&nbsp;Mario Guagliano ,&nbsp;Luca Iuliano ,&nbsp;Abdollah Saboori ,&nbsp;Sara Bagherifard","doi":"10.1016/j.pmatsci.2024.101357","DOIUrl":"10.1016/j.pmatsci.2024.101357","url":null,"abstract":"<div><p>In Additive Manufacturing (AM), parts are normally fabricated along the direction perpendicular to the build plate. However, the main axis of the part may differ from this direction, leading to the concept of “build orientation” that is an essential aspect in Design for AM (DfAM). Build orientation defines the required support structures, that in turn affects build time, material waste, and part’s surface and mechanical properties. The present paper reviews the literature, focusing on the most utilized Powder Bed Fusion (PBF) techniques in metal AM. The findings are categorized based on properties affected by build orientation. First, manufacturability, geometrical accuracy, surface roughness, and porosity are reviewed. Then microstructural analysis, mechanical properties such as hardness, tensile strength, fatigue strength and fracture toughness are explored, followed by wear and corrosion properties. Consistent attention is given to studies describing the effects of build orientation on efficiency and applicability of post-processing techniques. Critical discussion of results highlights build orientation as a major factor to be considered in design and evaluation of PBF. In addition, prospects for the field are outlined, including the necessity of creating DfAM guidelines regarding build orientation, for which the current work is intended to serve as a starting point.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101357"},"PeriodicalIF":33.6,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001269/pdfft?md5=9b5a35fbacc3e9e2bee4b955974debdd&pid=1-s2.0-S0079642524001269-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimuli-responsive hydrogels based on protein/peptide and their sensing applications 基于蛋白质/肽的刺激响应型水凝胶及其传感应用
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-21 DOI: 10.1016/j.pmatsci.2024.101355
Fangyuan Zhao , Mingzhu Liu , Hui Guo , Yao Wang , Yuqi Zhang , Mingxin He , Zhongyu Cai
{"title":"Stimuli-responsive hydrogels based on protein/peptide and their sensing applications","authors":"Fangyuan Zhao ,&nbsp;Mingzhu Liu ,&nbsp;Hui Guo ,&nbsp;Yao Wang ,&nbsp;Yuqi Zhang ,&nbsp;Mingxin He ,&nbsp;Zhongyu Cai","doi":"10.1016/j.pmatsci.2024.101355","DOIUrl":"10.1016/j.pmatsci.2024.101355","url":null,"abstract":"<div><div>Stimuli-responsive hydrogels are smart three-dimensional materials containing a huge amount of water, which can respond to different stimuli. Typical polymeric hydrogels can be designed for a range of stimuli at low cost. However, polymeric hydrogels are less capable of sensing specific biological stimuli or biomolecules owing to the lack of specificity, which led to emerging hydrogels using proteins, peptides, aptamers and so on. In this paper, we outline the recent progress made in the fast-growing field of protein/peptide-based stimuli-responsive hydrogels. Specially, an emphasis is given to the protein/peptide-based hydrogels fabricated by different building blocks, namely, helix self-assemblies, β-sheet and β-hairpin self-assemblies, protein/peptide incorporating active domains, protein/peptide monomers, and their unique structures and properties. The latest development of stimuli-responsive protein/peptide-based hydrogels in physical, chemical and biological sensor applications are then reviewed. Finally, we discuss the challenges and envision future development of biomacromolecular hydrogels and their potential applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101355"},"PeriodicalIF":33.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wood elasticity and compressible wood-based materials: Functional design and applications 木材弹性和可压缩木基材料:功能设计与应用
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-19 DOI: 10.1016/j.pmatsci.2024.101354
Zongying Fu , Yun Lu , Guofang Wu , Long Bai , Daniel Barker-Rothschild , Jianxiong Lyu , Shouxin Liu , Orlando J. Rojas
{"title":"Wood elasticity and compressible wood-based materials: Functional design and applications","authors":"Zongying Fu ,&nbsp;Yun Lu ,&nbsp;Guofang Wu ,&nbsp;Long Bai ,&nbsp;Daniel Barker-Rothschild ,&nbsp;Jianxiong Lyu ,&nbsp;Shouxin Liu ,&nbsp;Orlando J. Rojas","doi":"10.1016/j.pmatsci.2024.101354","DOIUrl":"10.1016/j.pmatsci.2024.101354","url":null,"abstract":"<div><p>The typical strength of wood makes it suitable as a structural material. Under load, natural wood exhibits a small strain within the elastic range. Such elasticity is associated with fast recovery materials, which hold relevance to applications that include piezoelectric sensors and actuators, bionic systems, soft robots and artificial muscles. Any progress to advance such advanced functions requires control on the hierarchical structure of wood as well as the multiscale and multicomponent interactions affecting its elasticity and compressibility. Herein, we review the key structural features, from the molecular to the macroscopic levels, that define wood elasticity and compressibility. They relate to the assembly pattern of wood’s lignocellulosic components, corresponding helical arrangement in the cell wall, and the anisotropy that controls the elastic and compression properties. We summarize the research progress achieved so far in the area, exploring the origins and feasible routes to modulate wood compressibility. Finally, we provide critical perspective on future impact of the area along with new applications of wood-based structures that take advantages of their latent elasticity.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101354"},"PeriodicalIF":33.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001233/pdfft?md5=6970964b05aea30c6f02b4120d770e9c&pid=1-s2.0-S0079642524001233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging breakthroughs in covalent triazine frameworks: From fundamentals towards photocatalytic water splitting and challenges 共价三嗪框架的新突破:从基本原理到光催化水分离与挑战
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-14 DOI: 10.1016/j.pmatsci.2024.101352
Asif Hayat , Hamid Ali , Zeeshan Ajmal , Ahmad Alshammari , Majed M. Alghamdi , Adel A. El-Zahhar , Naif Almuqati , Muhammad Sohail , Ahmed M. Abu-Dief , Shaukat Khan , Yas Al-Hadeethi , Mohd Zahid Ansari , Yasin Orooji
{"title":"Emerging breakthroughs in covalent triazine frameworks: From fundamentals towards photocatalytic water splitting and challenges","authors":"Asif Hayat ,&nbsp;Hamid Ali ,&nbsp;Zeeshan Ajmal ,&nbsp;Ahmad Alshammari ,&nbsp;Majed M. Alghamdi ,&nbsp;Adel A. El-Zahhar ,&nbsp;Naif Almuqati ,&nbsp;Muhammad Sohail ,&nbsp;Ahmed M. Abu-Dief ,&nbsp;Shaukat Khan ,&nbsp;Yas Al-Hadeethi ,&nbsp;Mohd Zahid Ansari ,&nbsp;Yasin Orooji","doi":"10.1016/j.pmatsci.2024.101352","DOIUrl":"10.1016/j.pmatsci.2024.101352","url":null,"abstract":"<div><p>Covalent triazine frameworks (CTFs) are an innovative type of porous organic material (POP) that has distinctive features, such as an aromatic C<img>N linkages (triazine unit) with the lack of any sort of weaker bonding. Specifically, the strong aromatic covalent bond provide CTFs with a substantial degree of chemical stability and a significant amount of nitrogen, making them valuable for several functional purposes and the fascinating heteroatoms impact. CTFs are exhibiting favorable attributes including synthesis variety, stability, non-toxic, simple organic composition, and improved organized structure. CTFs possess distinct characteristics which render them very suitable for a variety of functions, such as gas purification and retention, energy conservation, photocatalysis, and heterogeneous catalytic processes. According to existing research, CTFs may be categorized into two types: amorphous and crystalline CTFs. After 2008, many synthesis technique have been proposed, including an ionothermal trimerization approach, an approach mediated by phosphorus pentoxide (P<sub>2</sub>O<sub>5</sub>) techniques that utilize amidine polycondensation, a technique mediated by super acids, and a technique based on Friedel-Crafts reactions. This review intends to provide a concise overview of the latest advancements in CTFs, including innovative synthesis techniques, geometries, properties, morphologies, functionalization and key parameters which significantly affect their photocatalytic performance. This review demonstrates several approaches for optimizing the morphological band structure, separation of charge particles, and transmission using distinct chemical and physical engineering techniques. The focus has been on improving and optimizing the efficiency of certain applications, such as photocatalytic hydrogen evolution, photocatalytic oxygen evolution, and photocatalytic overall water splitting. This study illustrates the complexity of the processes behind these photocatalytic reactions, providing valuable knowledge to address existing obstacles and pave the way for future advancements.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101352"},"PeriodicalIF":33.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007964252400121X/pdfft?md5=d12d7d0f0438287a57776980ef3a98b1&pid=1-s2.0-S007964252400121X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering 通过表面工程提高低温固体氧化物燃料电池阴极的性能
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-13 DOI: 10.1016/j.pmatsci.2024.101353
Halefom G. Desta , Gebrehiwot Gebreslassie , Jianjian Zhang , Bin Lin , Yun Zheng , Jiujun Zhang
{"title":"Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering","authors":"Halefom G. Desta ,&nbsp;Gebrehiwot Gebreslassie ,&nbsp;Jianjian Zhang ,&nbsp;Bin Lin ,&nbsp;Yun Zheng ,&nbsp;Jiujun Zhang","doi":"10.1016/j.pmatsci.2024.101353","DOIUrl":"10.1016/j.pmatsci.2024.101353","url":null,"abstract":"<div><p>Solid oxide fuel cells (SOFCs) are recognized as highly efficient energy-conversion and eco-friendliness technologies. However, the high-temperature operation of conventional SOFCs at 800–1000 °C has hindered their practical applications due to the accelerated materials degradation and the resulting performance failures. Therefore, developing lower-temperature SOFCs (LT-SOFCs) seems necessary. With respect to LT-SOFCs, developing highly active cathode materials with long-term stability has been identified to be the priority, where cathode surface engineering has surfaced as a pivotal technique to bolster cathode functionality. This review delves into the myriads of surface modification strategies, including solution infiltration, atomic layer deposition (ALD), one-pot method, exsolution, pulsed laser deposition (PLD), and electrospinning (ES). Each method is scrutinized for its potential to enhance the cathode oxygen reduction reaction (ORR), a critical process in LT-SOFCs, while also fortifying the structural stability of cathode materials. This paper also meticulously evaluates recent breakthroughs in cathode surface engineering with highlighting the nuanced interplay between microstructural features and electrochemical performance. The technical challenges that persist in the practical application of LT-SOFCs are analyzed in this work and the possible further research directions are also suggested for overcoming the challenges towards significantly improved cathode performance including activity and stability.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101353"},"PeriodicalIF":33.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001221/pdfft?md5=479e1b163de6338e5a980dc649a72598&pid=1-s2.0-S0079642524001221-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partially oxidized MXenes for energy storage applications 用于储能应用的部分氧化二氧化锡
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-06 DOI: 10.1016/j.pmatsci.2024.101351
Iftikhar Hussain , Faiza Bibi , Sabarison Pandiyarajan , Abdul Hanan , Ho-Chiao Chuang , Kaili Zhang
{"title":"Partially oxidized MXenes for energy storage applications","authors":"Iftikhar Hussain ,&nbsp;Faiza Bibi ,&nbsp;Sabarison Pandiyarajan ,&nbsp;Abdul Hanan ,&nbsp;Ho-Chiao Chuang ,&nbsp;Kaili Zhang","doi":"10.1016/j.pmatsci.2024.101351","DOIUrl":"10.1016/j.pmatsci.2024.101351","url":null,"abstract":"<div><p>Two-dimensional (2D) materials have gained significant attention. MXenes, a member of 2D materials have shown promising properties for various applications. Partial oxidation has emerged as a strategy to enhance the performance of MXenes. This review article thoroughly discussed the mechanism, advantages/disadvantages, and energy storage applications of partially oxidized MXenes. Further the review presents the existing challenges and future prospects for the utilization of oxidized MXenes not only in energy storage but also in other applications. Overall, this comprehensive review provides valuable insights into the potential applications of sustainable energy.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101351"},"PeriodicalIF":33.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001208/pdfft?md5=f8e546a334676367e3018b3b8b80c980&pid=1-s2.0-S0079642524001208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings 促进伤口愈合,减少疤痕:纳米纤维技术在伤口敷料中的应用综述
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-06 DOI: 10.1016/j.pmatsci.2024.101350
Farinaz Jonidi Shariatzadeh , Sarah Currie , Sarvesh Logsetty , Rae Spiwak , Song Liu
{"title":"Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings","authors":"Farinaz Jonidi Shariatzadeh ,&nbsp;Sarah Currie ,&nbsp;Sarvesh Logsetty ,&nbsp;Rae Spiwak ,&nbsp;Song Liu","doi":"10.1016/j.pmatsci.2024.101350","DOIUrl":"10.1016/j.pmatsci.2024.101350","url":null,"abstract":"<div><p>Wound healing is a complex biological process that, when impaired, can lead to the formation of scars. Electrospun nanofibrous wound dressings have emerged as a promising option for promoting scar-free wound healing. This paper explores the complex role of physical, compositional, and chemical cues, each contributing to the remarkable healing potential of these wound dressings. The physical properties of these dressings, such as porosity and mechanical characteristics, can guide cellular behaviors and promote vascularization, fostering a conducive environment for reduced scarring. Furthermore, the integration of natural polymers that mimic the skin’s extracellular matrix, known as compositional cues, adds another layer of complexity to these wound dressings. As chemical cues, therapeutic agents have demonstrated their potential to combat chronic wound scenarios leading to scar formation. However, achieving the desired therapeutic effect hinges on the nature of these agents and their controlled release. Therefore, the paper also delves into various loading techniques for tailoring the release profiles of these bioactive agents. Although electrospun nanofibrous wound dressings are promising as wound dressings, a viable commercial product remains elusive. This gap can be attributed to a lack of comprehensive <em>in vivo</em> studies, particularly in animal models that mimic human wound healing.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101350"},"PeriodicalIF":33.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001191/pdfft?md5=a8d574197e5e282bb6648e0ff47adba9&pid=1-s2.0-S0079642524001191-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte additives for Li-ion batteries: classification by elements 锂离子电池电解质添加剂:按元素分类
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-02 DOI: 10.1016/j.pmatsci.2024.101349
Satish Bolloju , Naresh Vangapally , Yuval Elias , Shalom Luski , Nae-Lih Wu , Doron Aurbach
{"title":"Electrolyte additives for Li-ion batteries: classification by elements","authors":"Satish Bolloju ,&nbsp;Naresh Vangapally ,&nbsp;Yuval Elias ,&nbsp;Shalom Luski ,&nbsp;Nae-Lih Wu ,&nbsp;Doron Aurbach","doi":"10.1016/j.pmatsci.2024.101349","DOIUrl":"10.1016/j.pmatsci.2024.101349","url":null,"abstract":"<div><p>Electrolyte composition strongly affects the performance of Li-ion batteries in terms of their general electrochemical properties, electrode stability, cycle life, long-term stability (especially at elevated temperatures), and safety. Additives are essential constituents of efficient electrolyte systems for advanced batteries. Their nature and chemical identity are highly diverse, and their modes of action are sometimes not fully understood, seemingly related to “alchemy”. Additives play a crucial role in stabilizing interfaces, enhancing cycle life, and significantly improving safety. Here, a wide scope of additives used in rechargeable Li batteries is examined. Various additives are surveyed emphasizing the importance of their functional groups. We examine routes for judicious optimization of electrolyte solutions by selecting suitable additives for improved rechargeable batteries. As there are many types of additives, their judicious classification is very challenging. We suggest herein the classification and specification of important and representative additives by their central elements. A first classification is based on additives with central atoms other than carbon, hydrogen, and oxygen. Then, we mention additives based on unsaturated bonds and/or unstable ring organic molecules. Dual salt systems are also briefly discussed. Finally, we briefly discussed modelling efforts related to additives.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101349"},"PeriodicalIF":33.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007964252400118X/pdfft?md5=24e9e01e8a6d5a7d3672060c78bdcdab&pid=1-s2.0-S007964252400118X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of progress in calculation and simulation of high-temperature oxidation 高温氧化计算和模拟进展回顾
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-07-31 DOI: 10.1016/j.pmatsci.2024.101348
Dongxin Gao , Zhao Shen , Kai Chen , Xiao Zhou , Hong Liu , Jingya Wang , Yangxin Li , Zhixiao Liu , Huiqiu Deng , William Yi Wang , Xiaoqin Zeng
{"title":"Review of progress in calculation and simulation of high-temperature oxidation","authors":"Dongxin Gao ,&nbsp;Zhao Shen ,&nbsp;Kai Chen ,&nbsp;Xiao Zhou ,&nbsp;Hong Liu ,&nbsp;Jingya Wang ,&nbsp;Yangxin Li ,&nbsp;Zhixiao Liu ,&nbsp;Huiqiu Deng ,&nbsp;William Yi Wang ,&nbsp;Xiaoqin Zeng","doi":"10.1016/j.pmatsci.2024.101348","DOIUrl":"10.1016/j.pmatsci.2024.101348","url":null,"abstract":"<div><p>High-temperature oxidation can precipitate chemical and mechanical degradations in materials, potentially leading to catastrophic failures. Thus, understanding the mechanisms behind high-temperature oxidation and enhancing the oxidation resistance of thermal structural materials are endeavors of significant technical and economic value. Addressing these challenges often involves dissecting phenomena that span a broad range of scales, from micro to macro, a task that can prove challenging and costly through in-situ experimental approaches alone. Advancements in computational techniques have revolutionized the study of high-temperature oxidation. Various calculation and simulation methodologies now offer the means to rapidly acquire data with cost efficiency, providing a powerful complement to traditional experimental research. This review concentrates on the evolution and utility of these computational approaches in the domain of high-temperature oxidation. It underscores the critical role of calculation and simulation in materials science, offering insights into mass transport, mechanical failure, chemical reactions, and other multi-scale phenomena associated with oxidation processes. In this context, detailed discussions are presented on computational analyses at both atomic and mesoscopic levels, elucidating their respective contributions to our understanding of high-temperature oxidation mechanisms. Furthermore, the review highlights the impact of high-throughput computing in streamlining research and development processes, facilitating a more expedited exploration of innovative solutions in materials science. Through these discussions, the review aims to illustrate the indispensable nature of computational methods in advancing our comprehension and management of high-temperature oxidation phenomena.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101348"},"PeriodicalIF":33.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001178/pdfft?md5=fe2f469547362400ff0f73c129365fae&pid=1-s2.0-S0079642524001178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phototherapeutic nanoagents for cancer immunotherapy 用于癌症免疫疗法的光疗纳米试剂
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-07-30 DOI: 10.1016/j.pmatsci.2024.101347
Maomao He , Ming Xiao , Ran Wang, Jiangli Fan, Xiaojun Peng, Wen Sun
{"title":"Phototherapeutic nanoagents for cancer immunotherapy","authors":"Maomao He ,&nbsp;Ming Xiao ,&nbsp;Ran Wang,&nbsp;Jiangli Fan,&nbsp;Xiaojun Peng,&nbsp;Wen Sun","doi":"10.1016/j.pmatsci.2024.101347","DOIUrl":"10.1016/j.pmatsci.2024.101347","url":null,"abstract":"<div><p>Phototherapy, referring to photodynamic/photothermal therapy, has been extensively validated to promote enhanced immunotherapeutic effects by stimulating tumor cell immunogenic death. Photoimmunotherapy has been persistently investigated to establish potent antitumor effects against primary and distant tumors, synchronously eliciting powerful immunological memory effects, thus ultimately preventing and eradicating rechallenged tumors. Phototherapeutic nanoagents play essential roles in ensuring the sufficient efficacy of photoimmunotherapy, which provides a flexible platform to integrate multifunctional types of phototherapy into a single platform. In particular, tailored nanoparticles are available to amplify tumor immunogenicity and to modulate the immunosuppressive tumor microenvironment simultaneously and spatiotemporally for the treatment of cancers. In this review, we summarized commonly adopted strategies to achieve enhanced cancer immunotherapies induced by conventionally designed phototherapeutic nanoagents. We also analyzed the immunotherapeutic performance and characteristics of phototherapy in detail. The manuscript implies our thoughts on the following aspects: directional design of photosensitizing agents, functional construction of nanomedicines, rational modulation of immunotherapy, and augmented phototherapeutic effects.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101347"},"PeriodicalIF":33.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001166/pdfft?md5=f6b5be11d359f87bbfc615b30e0600a4&pid=1-s2.0-S0079642524001166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信