{"title":"Porous monoliths from polyimide: Synthesis, modifications and applications","authors":"Rubei Hu , Yiming Chen , Chunmei Zhang , Shaohua Jiang , Haoqing Hou , Gaigai Duan","doi":"10.1016/j.pmatsci.2024.101284","DOIUrl":"10.1016/j.pmatsci.2024.101284","url":null,"abstract":"<div><p>High-performance porous polyimide (PI) monoliths, including PI aerogels, sponges, and foams, have become one of the hotspots in both researching and applications due to their superior properties such as high porosity, outstanding mechanical and thermal stability, low dielectric constant and thermal conductivity. Up to now, various fabricating methods and applicating situations for PI porous monolith materials have been reported. From the viewpoint of molecular chemistry, porous structure construction, as well as the functional modification, the property optimization and adjustment are feasible, endowing PI monoliths with promising potential for different practical applications (<em>e.g.</em> sensors, low-k materials, thermal management, energy field and utilization, absorption and filtration, photonic utilization, etc.). In this review, the recent progress of porous PI monoliths was summarized in detail based on the fabrication methods, functional modifications, as well as multi-functional applications. Besides, the future perspectives of this field were also provided for reference. Apart from presenting an overview of progress made in the field of PI porous monoliths, this review could also be meaningful for those researching topics which have similarity within.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101284"},"PeriodicalIF":37.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments","authors":"Yu-Wei Cui , Liqiang Wang , Lai-Chang Zhang","doi":"10.1016/j.pmatsci.2024.101277","DOIUrl":"10.1016/j.pmatsci.2024.101277","url":null,"abstract":"<div><p>The use of biomedical metallic materials in research and clinical applications has been an important focus and a significant area of interest, primarily owing to their role in enhancing human health and extending human lifespan. This article, particularly on titanium-based alloys, explores exceptional properties that can address bone health issues amid the growing challenges posed by an aging population. Although stainless steel, magnesium-based alloys, cobalt-based alloys, and other metallic materials are commonly employed in medical applications, limitations such as toxic elements, high elastic modulus, and rapid degradation rates limit their widespread biomedical applications. Therefore, titanium-based alloys have emerged as top-performing materials, gradually replacing their counterparts in various applications. This article extensively examines and highlights titanium-based alloys, along with an in-depth discussion of currently utilized metallic biomedical materials and their inherent limitations. To begin with, the essential requirements for load-bearing biomaterials are introduced. Then, the biomedical metallic materials are summarized and compared. Afterward, the microstructure, properties, and preparations of titanium-based alloys are explored. Furthermore, various surface modification methods are discussed to enhance biocompatibility, wear resistance, and corrosion resistance. Finally, the article proposes the development path for titanium-based alloys in conjunction with additive manufacturing and the novel alloy nitinol.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101277"},"PeriodicalIF":37.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007964252400046X/pdfft?md5=ed448015c2eadf4d6a1123bd409186f1&pid=1-s2.0-S007964252400046X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Passive daytime radiative cooling materials toward real-world applications","authors":"Cunhai Wang , Hao Chen , Fuqiang Wang","doi":"10.1016/j.pmatsci.2024.101276","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101276","url":null,"abstract":"<div><p>Passive daytime radiative cooling (PDRC) is an emerging cooling technique of a sunshine-exposed terrestrial surface by dissipating excessive heat into the deep-cold outer space. It is a passive technique without fuel consumption and paves a promising way to overcome the issues of energy shortage and environmental pollution at the global scale. In the contemporary era, highly developed nanophotonic engineering allows spectrally precise emissivity/reflectivity of a thermal surface, significantly improving a PDRC structure's cooling power. Furthermore, scalable manufacturing techniques have also been successfully developed for PDRC material preparation at affordable costs, promoting their practical implementations. However, a comprehensive review of PDRC materials for real-world applications is still lacking. This work begins with the fundamentals of PDRC, continues with the power enhancement and scaling up process of PDRC materials, boosts with the advances of three typical types of scalable PDRC materials, including films, textiles, and bulk materials, and ends with an outlook that addresses the limitations and challenges on PDRC materials for extensive real-world applications. This review can help scientists and engineers carry forward the design and implementation of PDRC materials, promote the mitigation of global issues such as scorching and water shortage, and make the planet healthier and more comfortable.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101276"},"PeriodicalIF":37.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kirtiratan Godbole , B. Bhushan , S.V.S. Narayana Murty , K. Mondal
{"title":"Al-Si controlled expansion alloys for electronic packaging applications","authors":"Kirtiratan Godbole , B. Bhushan , S.V.S. Narayana Murty , K. Mondal","doi":"10.1016/j.pmatsci.2024.101268","DOIUrl":"10.1016/j.pmatsci.2024.101268","url":null,"abstract":"<div><p>The demand for thermal management in electronic packaging (EP) and its allied industries, especially in high-power electronics, has grown in the last three decades due to the continuous miniaturization of electronic components. The thermal management of EP warrants metal/alloys/composite with uniquely low thermal expansion and high thermal conductivity. Controlled expansion (CE) materials play a significant role and impart tunable thermal properties. The first and second generations of CE alloys, like Invar, Kovar, and Elinvar, are unsuitable to provide high thermal conductivity for heat sinking along with low density, which are essential for EP materials. The third-generation hypereutectic Al-Si alloys overcome these limitations. The capability to tune the CTE values of the Al-Si CE alloys combined with their lower densities and high thermal conductivities has made them a preferred choice for electronic applications, such as carriers and heat sinks. However, poor machinability and the inability to prepare geometrically complex Al-Si CE alloy with conventional manufacturing processes pose challenges. A paradigm shift is taking place in fabricating components through additive manufacturing and friction stir processing, assisting in mitigating machining and shape complexity. The present work attempts to provide comprehensive details on the properties, microstructures, and processing techniques of hypereutectic Al-Si CE alloys and recent advancements.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101268"},"PeriodicalIF":37.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ihsane Kassem, El-Houssaine Ablouh, Fatima-Zahra El Bouchtaoui, Mohamed Jaouahar, Mounir El Achaby
{"title":"Polymer coated slow/ controlled release granular fertilizers: Fundamentals and research trends","authors":"Ihsane Kassem, El-Houssaine Ablouh, Fatima-Zahra El Bouchtaoui, Mohamed Jaouahar, Mounir El Achaby","doi":"10.1016/j.pmatsci.2024.101269","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101269","url":null,"abstract":"<div><p>Synthetic fertilizers have supported the global world agriculture and food systems since 20th century, they have contributed significantly to increase soil productivity so as to achieve higher yields and ensure the world food security. However, excessive, and inappropriate use of mineral fertilizers combined with their fast dissolution nature, have shown major issues related to the environment and low nutrients use efficiency. Accordingly, it has become crucial to adopt modern technologies in order to manage nutrients supply for an optimum and effective use by the plants, while protecting the ecosystem from negative impacts. Polymer coating technology for fertilizers has shown the potential to better provide nutrients in a slow/ controlled rate for optimal crop nutrition with minimal environmental issues. In this review, we tried to establish a fundamental understanding of why and how polymer coated fertilizers (PCFs) are developed from the past to the recent trends. Telling the story of designing PCFs, we tried also to shed light on their function mechanisms as affected by many factors, their effects on the soil components, on the crops' response as well as on the environment and economic return. We aimed also in this review to deeply understand the interactions between the physicochemical properties of the polymeric coating, the fertilizer granules, the soil environment, and the crops through multidisciplinary investigation from polymer science, soil science and agronomy perspectives.</p><p>Further considerations on the challenges and perspectives for future development of fertilizers with high nutrients use efficiency were discussed in this review.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101269"},"PeriodicalIF":37.4,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From 0D to 2D: Synthesis and bio-application of anisotropic magnetic iron oxide nanomaterials","authors":"Fuqiang Chang , Gemma-Louise Davies","doi":"10.1016/j.pmatsci.2024.101267","DOIUrl":"10.1016/j.pmatsci.2024.101267","url":null,"abstract":"<div><p>Magnetic iron oxide nanoparticles (MIPs) have garnered significant scientific interest due to their magnetic properties and unique features, including low toxicity, colloidal stability, and surface engineering capability. Recent advances in nanoparticle synthesis have enabled the development of MIPs with precise control over their physicochemical properties, making them suitable for medical applications. Anisotropic MIPs have demonstrated shape-dependent performance in various bio-applications, leading to increased research moving from traditional zero-dimensional (0D) morphology towards one-dimensional (1D) and two-dimensional (2D) topology. While these anisotropic materials offer enhanced properties for specific applications, a critical and systematic comparison of their anisotropy effects is lacking in the literature. This review seeks to fill this current gap in the literature and provides a comprehensive summary of the last two decades of research on magnetic iron oxide materials with different shapes in biomedical applications. The paper will discuss the theoretical mechanisms of shape-dependent effects, primary synthetic approaches of 0D, 1D, and 2D MIP materials, biomedical applications, and biological behaviors. In addition, the review identifies critical challenges and open questions that need to be addressed. The proposed research directions outlined in this review have the potential to revitalize the use of “old” MIPs towards future physicochemical and biomedical applications.</p><p>Magnetic iron oxide nanoparticles (MIPs), anisotropic, shape-dependent, zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D), MRI, hyperthermia, bioapplication.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101267"},"PeriodicalIF":37.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000367/pdfft?md5=22af82e6db1d18604607665f1c4f307e&pid=1-s2.0-S0079642524000367-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rare-earth tantalates for next-generation thermal barrier coatings","authors":"Lin Chen , Baihui Li , Jing Feng","doi":"10.1016/j.pmatsci.2024.101265","DOIUrl":"10.1016/j.pmatsci.2024.101265","url":null,"abstract":"<div><p>Ceramic thermal barrier coatings (TBCs) have attracted significant research attention owing to their utility in the thermally insulating alloy components of gas turbines and aircraft engines that operate at high temperatures. Most TBCs comprise yttria-stabilized zirconia (YSZ); however, YSZ no longer meets the demands of modern TBC applications due to its low working temperature and high thermal conductivity. It is therefore imperative to develop a ferroelastic ceramic to replace YSZ in TBC applications. Ferroelastic rare-earth tantalates (RETaO<sub>4</sub>) possess many desirable properties, such as ferroelastic toughening, low thermal conductivity, high thermal expansion coefficients, and excellent comprehensive mechanical properties, and thus, they are promising next-generation TBCs, which are expected to operate at ultra-high temperatures (≥1600 °C). This review summarizes the thermophysical properties, CaO-MgO-AlO<sub>1.5</sub>-SiO<sub>2</sub> (CMAS) corrosion resistance, coatings, and shortcomings of three types of tantalate ceramics (RETaO<sub>4</sub>, RE<sub>3</sub>TaO<sub>7</sub>, and RETa<sub>3</sub>O<sub>9</sub>) and outlines the direction of future work in this field.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101265"},"PeriodicalIF":37.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wu Yang , Wang Yang , Jiaming Zeng , Yuling Chen , Yongfa Huang , Juan Liu , Jianyun Gan , Tingzhen Li , Hao Zhang , Linxin Zhong , Xinwen Peng
{"title":"Biopolymer‐based gel electrolytes for electrochemical energy Storage: Advances and prospects","authors":"Wu Yang , Wang Yang , Jiaming Zeng , Yuling Chen , Yongfa Huang , Juan Liu , Jianyun Gan , Tingzhen Li , Hao Zhang , Linxin Zhong , Xinwen Peng","doi":"10.1016/j.pmatsci.2024.101264","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101264","url":null,"abstract":"<div><p>With the rapid development of wearable electronics, safety hazards and operational stability have drawn widespread attention in recent years. Biopolymers with low cost, eco‐friendly and biocompatibility are competitive candidates to replace traditional petroleum‐based materials in constructing gel polymer electrolytes. Biopolymer-based gel electrolytes (BGPEs) have exhibited broad application prospects through suitable structural designs and functionalization in flexible and smart electrochemical energy storage devices. This review summarized the recent advances of BGPEs with characteristic physicochemical properties and smart functionalities for application in electrochemical energy storage devices. The crosslinking methods and performance validation of BGPEs are also comprehensively reviewed and analyzed. Significantly, the functionalized BGPEs with self‐healing, stretchability, and thermotolerant abilities are emphasized. Finally, the remaining challenges and future directions of BGPEs for application in advanced electrochemical energy storage devices are outlined to provide guidance for their further development.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101264"},"PeriodicalIF":37.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple shear methodology for local structure–property relationships of sheet metals: State-of-the-art and open issues","authors":"Guofeng Han , Ji He , Shuhui Li , Zhongqin Lin","doi":"10.1016/j.pmatsci.2024.101266","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101266","url":null,"abstract":"<div><p>Simple shear presents a local material structure–property relationship and plays an important role in the development of material design, mechanical modeling, and manufacturing processes for sheet metals. Simple shear tests are extensively adopted to reveal the stress-state-dependent mechanisms of material microstructure evolution with their corresponding mechanical properties, to develop sophisticated constitutive models capturing complex mechanical behaviors, and to precisely characterize the failure limits for shear-dominated or large-strain deformation processes. Thus, the simple shear methodology including specimen geometry, fixing and loading device, data acquisition and the set of procedures for results analysis, has become a topic of growing interest because of its various distinctive capacities. Over the years, several simple shear analyses and test methods have been proposed without a unified understanding. Interpreting the experimental results can be confusing due to the complexity of finite deformation, variety of boundary conditions in practice, and complexity of the mechanical behavior of materials; however, neither a widely accepted protocol nor a systematic overview of this topic exists. To fill this gap, the present study attempts to provide a comprehensive review of the simple shear methodology for sheet metals, which will serve as a reference for summarizing substantial efforts to improve the understanding and gain valuable scientific insight, a guideline to discover local structure–property relationships of materials, and a solid step for shedding light on its standardization. In this paper, the motivation for the development of a simple shear methodology is first discussed, and the recent progress in experimental mechanics and experimental technologies is summarized. Its application in understanding the mechanical behaviors (hardening, yielding, and ductile fracture) is focused on, and the structure–property relationships revealed by simple shear are further highlighted. The challenges and prospects for future research are discussed. The principles, methodologies, and perspectives provided are highly relevant and are expected to benefit emerging areas such as heterostructured materials, micro/nanoscale mechanical testing, nonlocal plasticity, and additive manufacturing (AM).</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"143 ","pages":"Article 101266"},"PeriodicalIF":37.4,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Zheng , Cuiping Han , Chun-Sing Lee , Wenjiao Yao , Chunyi Zhi , Yongbing Tang
{"title":"Materials challenges for aluminum ion based aqueous energy storage devices: Progress and prospects","authors":"Xiao Zheng , Cuiping Han , Chun-Sing Lee , Wenjiao Yao , Chunyi Zhi , Yongbing Tang","doi":"10.1016/j.pmatsci.2024.101253","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101253","url":null,"abstract":"<div><p>Due to the shortage of lithium resources, current lithium-ion batteries are difficult to meet the growing demand for energy storage in the long run. Rechargeable aqueous aluminum ion (Al<sup>3+</sup>) electrochemistry has the advantages of abundant resources, high safety, environmental friendliness, and high energy/power density. It is, therefore an ideal choice for alternative energy storage devices. However, Al<sup>3+</sup>-based technology is still in the preliminary stage, and there are various challenges. In reality, its kinetics and reversibility have long been disturbed by the strong electrostatic field of Al<sup>3+</sup> and the parasitic side reactions of aqueous electrolytes. This paper first summarizes the history of aqueous aluminum ion batteries/capacitors (AAIBs/AAICs) and analyzes the challenges faced by cathode, anode, and electrolyte. Then, the state-of-the-art research progress, design strategies, and limitations of the cathode, anode, electrolyte, and Al<sup>3+</sup>-based energy storage devices are comprehensively introduced, and their structure, performance, and reaction mechanisms are discussed. Finally, the future design of AAIBs/AAICs with long life, high reversibility, and high energy/power density has been prospected, and promising research directions are pointed out.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"143 ","pages":"Article 101253"},"PeriodicalIF":37.4,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}