Progress in Materials Science最新文献

筛选
英文 中文
Recent advances in COF-derived carbon materials: Synthesis, properties, and applications COF 衍生碳材料的最新进展:合成、性能和应用
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-18 DOI: 10.1016/j.pmatsci.2024.101373
Yaqin Zhu , Lizhen Chen , Junjie Pan , Shaohua Jiang , Jiaxiu Wang , Guoying Zhang , Kai Zhang
{"title":"Recent advances in COF-derived carbon materials: Synthesis, properties, and applications","authors":"Yaqin Zhu ,&nbsp;Lizhen Chen ,&nbsp;Junjie Pan ,&nbsp;Shaohua Jiang ,&nbsp;Jiaxiu Wang ,&nbsp;Guoying Zhang ,&nbsp;Kai Zhang","doi":"10.1016/j.pmatsci.2024.101373","DOIUrl":"10.1016/j.pmatsci.2024.101373","url":null,"abstract":"<div><div>Functional porous carbon materials are at the forefront of current research due to their exceptional properties, making them highly sought after for various applications, including energy storage/conversion, sensing, adsorption, and catalysis. One crucial factor in producing carbon materials with specific uses and optimized functions is the selection of appropriate carbon precursors. Covalent organic frameworks (COFs) have emerged as game-changing precursors due to their adaptable molecular design and adjustable structures. As a result, they exhibit tremendous potential for the development of advanced carbon materials. In recent years, there has been remarkable progress in COF-derived carbon materials, and we try to comprehensively cover COF-derived carbon materials from their synthetic methods to specific applications. Focusing on the relationship between structure and properties in COF-derived carbon materials, mechanism during carbonization, morphology control strategies, and properties modulation approaches are highlighted, followed by their representative applications in the last 10 years. Moreover, despite the significant advances achieved to date, COF-derived carbon materials still suffer from some limitations. Thus, proposals on how to improve COF-derived carbon materials’ performance are also discussed, as well as future challenges and perspectives, aiming to provide concise yet informative guidelines for choosing suitable carbon materials for particular applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101373"},"PeriodicalIF":33.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of aortic dissection: From pathological changes to experimental and in silico models 主动脉夹层的机制:从病理变化到实验和计算机模型
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-12 DOI: 10.1016/j.pmatsci.2024.101363
Malte Rolf-Pissarczyk , Richard Schussnig , Thomas-Peter Fries , Dominik Fleischmann , John A. Elefteriades , Jay D. Humphrey , Gerhard A. Holzapfel
{"title":"Mechanisms of aortic dissection: From pathological changes to experimental and in silico models","authors":"Malte Rolf-Pissarczyk ,&nbsp;Richard Schussnig ,&nbsp;Thomas-Peter Fries ,&nbsp;Dominik Fleischmann ,&nbsp;John A. Elefteriades ,&nbsp;Jay D. Humphrey ,&nbsp;Gerhard A. Holzapfel","doi":"10.1016/j.pmatsci.2024.101363","DOIUrl":"10.1016/j.pmatsci.2024.101363","url":null,"abstract":"<div><div>Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and <em>in silico</em> models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate <em>in silico</em> models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, <em>in silico</em> models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of <em>in silico</em> models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed <em>in silico</em> models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"150 ","pages":"Article 101363"},"PeriodicalIF":33.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling chromism-induced marvels in energy storage systems 揭开储能系统中色素诱导的奥秘
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-12 DOI: 10.1016/j.pmatsci.2024.101374
Marzieh Golshan , Mehdi Salami-Kalajahi
{"title":"Unraveling chromism-induced marvels in energy storage systems","authors":"Marzieh Golshan ,&nbsp;Mehdi Salami-Kalajahi","doi":"10.1016/j.pmatsci.2024.101374","DOIUrl":"10.1016/j.pmatsci.2024.101374","url":null,"abstract":"<div><p>Color is a property directly discernible by our eyes, making it perceptually conspicuous. Changes in color, whether achromatic (from white to black) or chromatic (from colorless to colored or between different colors), are easily detectable by people with normal vision or through simple spectrophotometric instruments. The categorization of chromogenic systems reveals various mechanisms of chromism. Applications photochromic, thermochromic, and electrochromic materials have been extensively discussed, including their behavior, mechanisms, and limitations. In the landscape of future energy storage systems, the significance of chromisms transcends conventional boundaries, promising transformative impacts on energy efficiency, management strategies, and sustainability. Chromic materials, endowed with their dynamic color-changing attributes, emerge as catalysts for innovation across diverse applications such as batteries, supercapacitors, and smart windows. This review aspires to offer a comprehensive exposition on the intrinsic chromism phenomena within energy storage systems. Commencing with a succinct overview of chromism phenomena and their nuanced formation mechanisms, the narrative seamlessly transitions to an exhaustive scrutiny of recent strides. This exploration encompasses a thorough examination of the components, intricate structures, and diverse properties characterizing chromism phenomena.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101374"},"PeriodicalIF":33.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation 高导热性聚合物复合材料:理论、模拟、结构和界面调节
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-08 DOI: 10.1016/j.pmatsci.2024.101362
Jun-Wei Zha , Fan Wang , Baoquan Wan
{"title":"Polymer composites with high thermal conductivity: Theory, simulation, structure and interfacial regulation","authors":"Jun-Wei Zha ,&nbsp;Fan Wang ,&nbsp;Baoquan Wan","doi":"10.1016/j.pmatsci.2024.101362","DOIUrl":"10.1016/j.pmatsci.2024.101362","url":null,"abstract":"<div><p>Thermal conductivity is critical to the stable operation, service life and reliability of electronic equipment. Solving thermal management problems in electronic devices requires the development of composites with high thermal conductivity. The interface between the filler and the matrix is formed due to the addition of the thermal conductive filler. The presence of interfaces greatly affects the heat transfer of composites. Therefore, it is a challenge to effectively control interface behavior and reduce interface thermal resistance. This review describes the mechanism of heat conduction and the theory of thermal conductivity of composites, and analyzes in depth the effect of interfacial thermal resistance on phonon heat transfer. The importance of improving the thermal conductivity of composites based on interfacial regulation strategies is illustrated from three aspects: non-directional structure design of fillers, co-doping of fillers and multi-layer structure design. Combined with the current research status, this review also describes the multifunctionality of thermally conductive composites. It is hoped that this review will provide some guidance for the study of polymer-based thermally conductive composites.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101362"},"PeriodicalIF":33.6,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in phase field modeling of functional properties and fracture behavior of shape memory alloys 形状记忆合金功能特性和断裂行为的相场建模进展
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-06 DOI: 10.1016/j.pmatsci.2024.101364
Bo Xu , Chao Yu , Junyuan Xiong , Jiachen Hu , Qianhua Kan , Chong Wang , Qingyuan Wang , Guozheng Kang
{"title":"Progress in phase field modeling of functional properties and fracture behavior of shape memory alloys","authors":"Bo Xu ,&nbsp;Chao Yu ,&nbsp;Junyuan Xiong ,&nbsp;Jiachen Hu ,&nbsp;Qianhua Kan ,&nbsp;Chong Wang ,&nbsp;Qingyuan Wang ,&nbsp;Guozheng Kang","doi":"10.1016/j.pmatsci.2024.101364","DOIUrl":"10.1016/j.pmatsci.2024.101364","url":null,"abstract":"<div><p>Shape memory alloys (SMAs) have been widely employed in many engineering fields due to their unique functional properties, such as super-elasticity, elastocaloric effect, and shape memory effect. Besides the experimental observation, the phase field approach is a mainstream and significant research tool and has played an increasingly prominent role in predicting the functional properties and fracture behavior of SMAs and revealing correspondent physical mechanisms. In this work, the phase field models of SMAs are first introduced, including the models of thermally induced SMAs addressing a) the fundamental framework for the martensite transformation and considering some influence factors; b) precipitation behavior; c) fracture behavior; and those of magnetically induced SMAs. Then, the state-of-the-art of phase field simulations on the thermally induced SMAs are systematically reviewed by concerning the martensite transformation, functional properties, and fracture behavior, and those on the magnetically induced SMAs are also reviewed by considering the magnetic-field-induced strain and mechanical-field- and magnetic-field-induced shape memory effect. Finally, the future research directions of the phase field modeling of SMAs are prospected.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101364"},"PeriodicalIF":33.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural polysaccharide-based room-temperature phosphorescence materials: Designs, properties, and applications 基于天然多糖的室温磷光材料:设计、特性和应用
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-06 DOI: 10.1016/j.pmatsci.2024.101372
Qian Gao, Baozhong Lü, Feng Peng
{"title":"Natural polysaccharide-based room-temperature phosphorescence materials: Designs, properties, and applications","authors":"Qian Gao,&nbsp;Baozhong Lü,&nbsp;Feng Peng","doi":"10.1016/j.pmatsci.2024.101372","DOIUrl":"10.1016/j.pmatsci.2024.101372","url":null,"abstract":"<div><p>Organic room-temperature phosphorescence (RTP) materials have garnered extensive attention owing to their long-lived excited states, low cost, good processability, and promising applications in domains such as anti-counterfeiting and information encryption, afterglow displays, biological imaging, and sensing. However, most current organic RTP materials are derived from artificial phosphors and petroleum-based polymers, hindering their practical applications owing to issues such as complicated synthesis and purification procedures, poor colour tunability, and lack of renewability and sustainability. Fortunately, the conversion of natural polysaccharides to RTP materials can address the issues. In this review, we summarize the recent advancements in natural polysaccharide-based RTP materials, including their design principles, underlying mechanisms, advanced luminescence characteristics, and potential applications. Special emphasis is placed on representative natural polysaccharide-based RTP systems exhibiting remarkable properties rarely observed in artificial phosphors. The discussion also focuses on intrinsic structure–performance relationships and outlines key challenges and perspectives for future development in this intriguing field. Overall, this review aims to detail guidelines and provide inspiration for the development of eco-friendly polysaccharide-based RTP materials, shedding new light on the high-value utilization of natural polysaccharides.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101372"},"PeriodicalIF":33.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidification in metal additive manufacturing: challenges, solutions, and opportunities 金属增材制造中的凝固:挑战、解决方案和机遇
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-09-05 DOI: 10.1016/j.pmatsci.2024.101361
Shubham Chandra , Jayaraj Radhakrishnan , Sheng Huang , Siyuan Wei , Upadrasta Ramamurty
{"title":"Solidification in metal additive manufacturing: challenges, solutions, and opportunities","authors":"Shubham Chandra ,&nbsp;Jayaraj Radhakrishnan ,&nbsp;Sheng Huang ,&nbsp;Siyuan Wei ,&nbsp;Upadrasta Ramamurty","doi":"10.1016/j.pmatsci.2024.101361","DOIUrl":"10.1016/j.pmatsci.2024.101361","url":null,"abstract":"<div><div>The physics of alloy solidification during additive manufacturing (AM) in methods such as laser powder bed fusion (LPBF), electron beam powder bed fusion (EPBF), and laser directed energy deposition (LDED) is distinct due to the combination of (a) the rapid solidification conditions that often prevail in AM, (b) adjoining scan tracks that result in the overlap of the adjacent melt pools, and (c) layer-wise fabrication that causes the pre-deposited layer to influence the subsequent layer’s microstructural evolution. The complex interplay between these and each alloy’s distinct solidification characteristics results in a wide spectrum of hierarchical microstructures that span multiple length scales, with diverse grain morphologies and non-equilibrium phases. Consequently, a detailed understanding of the solidification phenomena that occur during LPBF, EPBF, and LDED is necessary for controlling the microstructural evolution, which ensures repeatable and predictable mechanical response of the built part and, hence, structural reliability of it in service. Keeping this in view, substantial efforts have been made to develop a detailed understanding of the solidification during AM of alloys, which are summarised in this review. From the local interfacial equilibrium applicable to a range of rapid solidification conditions to non-equilibrium conditions that prevail during ultra-fast solidification are reviewed. Numerical efforts ranging from the atomic scale to the macro-scale have been reviewed to highlight the phenomena of dislocation evolution, grain growth, and phase formation during solidification. Specific challenges, such as solidification cracking in non-weldable alloys and porosity-cracking dilemmas, are discussed. Unique opportunities for tailoring microstructures, such as in-situ alloying, are presented.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101361"},"PeriodicalIF":33.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale computational study of high-temperature corrosion and the design of corrosion-resistant alloys 高温腐蚀和耐腐蚀合金设计的多尺度计算研究
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-30 DOI: 10.1016/j.pmatsci.2024.101359
Terrence Wenga , Digby D. Macdonald , Wenchao Ma
{"title":"Multi-scale computational study of high-temperature corrosion and the design of corrosion-resistant alloys","authors":"Terrence Wenga ,&nbsp;Digby D. Macdonald ,&nbsp;Wenchao Ma","doi":"10.1016/j.pmatsci.2024.101359","DOIUrl":"10.1016/j.pmatsci.2024.101359","url":null,"abstract":"<div><p>Corrosion is a serious problem, which reduces the efficiency and lifespan of various technologies, such as thermal power plants, aviation, nuclear reactors, etc. It starts from the interactions of corrosive species with alloys to various subsequent processes, such as oxide-formation, growth, and delamination, void and crevices-formation, etc., which all have different lengths and time-spans. Resolving such a problem requires a complete understanding of these processes, necessitating multi-scale computational modeling (MSCM). Available literature focuses mainly on single aspects of corrosion, such as the adsorption of corrosive agents on alloy or cracking, which requires the application of single computational modeling (SCM). Applying SCM is inadequate for addressing and describing some essential corrosion processes as spatial and temporal scales increase, as well as designing corrosion-resistant alloys, which also requires MSCM to couple various properties along their hierarchical structures. Thus, this paper critically and comprehensively reviews the MSCM of high-temperature corrosion and its control. The structure–property relationships during alloy design were discussed. Also, challenges and hot spots for further research directions were identified. We foresee that, in the future, there will be wide applications of MSCM to uncover the hitherto unknown corrosion processes, and alloys will be designed from atomic/molecular structures. Hence, this review paper will provide several computational options for corrosion investigation and connecting alloy structures to properties during alloy designing.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101359"},"PeriodicalIF":33.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent manipulation of liquids through the bio-inspired structuring of materials 通过生物启发材料结构实现液体的智能操控
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-30 DOI: 10.1016/j.pmatsci.2024.101358
Chengchun Zhang , Lin Wang , Colin R. Crick , Yao Lu
{"title":"Intelligent manipulation of liquids through the bio-inspired structuring of materials","authors":"Chengchun Zhang ,&nbsp;Lin Wang ,&nbsp;Colin R. Crick ,&nbsp;Yao Lu","doi":"10.1016/j.pmatsci.2024.101358","DOIUrl":"10.1016/j.pmatsci.2024.101358","url":null,"abstract":"<div><p>Fluid manipulation behavior is crucial for the survival of various living organisms and industrial applications. However, traditional techniques are no longer sufficient due to advancements in technology and increasing demands of modern life and industry. To enhance flexibility and practicality, scientists have explored the use of external conditions and stimuli to achieve intelligent control over liquid. Intelligent liquid manipulation strategies based on bio-inspired wettability structure surfaces appear to be an innovative and promising direction. This paper presents a systematic review of current research on intelligent manipulation of liquids using bionic wettability structure surfaces. The initial section of this paper outlines relevant theoretical basis of liquid wetting, transport, and droplet bouncing. Subsequently, the intelligent manipulation strategies of liquid on different bionic wettability structure surfaces under various external stimuli are reviewed. Furthermore, intelligent control of underwater oil droplets and bubbles is also discussed. Then, typical preparation techniques of bionic wettability structure surfaces are presented. Lastly, the limitations and prospects of intelligent liquid manipulation techniques for bionic wettability structure surfaces are discussed. The objective of this paper is to explore the progress of intelligent liquid manipulation on bionic wetting structure surfaces, and to provide guidance for designing effective intelligent liquid manipulation structures.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101358"},"PeriodicalIF":33.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001270/pdfft?md5=955c3a53f08702041a14d189d8f3337c&pid=1-s2.0-S0079642524001270-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientation of discontinuous fillers in polymer composites: modelling, characterization, control and applications 聚合物复合材料中不连续填料的取向:建模、表征、控制和应用
IF 33.6 1区 材料科学
Progress in Materials Science Pub Date : 2024-08-30 DOI: 10.1016/j.pmatsci.2024.101360
Jia Li , Tao Guan , Zixi Zhang , Yu-Tong Fu , Fang-Liang Guo , Pei Huang , Zheling Li , Yuan-Qing Li , Shao-Yun Fu
{"title":"Orientation of discontinuous fillers in polymer composites: modelling, characterization, control and applications","authors":"Jia Li ,&nbsp;Tao Guan ,&nbsp;Zixi Zhang ,&nbsp;Yu-Tong Fu ,&nbsp;Fang-Liang Guo ,&nbsp;Pei Huang ,&nbsp;Zheling Li ,&nbsp;Yuan-Qing Li ,&nbsp;Shao-Yun Fu","doi":"10.1016/j.pmatsci.2024.101360","DOIUrl":"10.1016/j.pmatsci.2024.101360","url":null,"abstract":"<div><p>Polymer composites have progressively found applications in sectors such as automotive, aerospace and energy storage. Their high performance can be mainly attributed to their compositions (e.g. the types of fillers and matrices) and structures (e.g. the orientation and dimension of fillers). Filler orientation has long been a crucial subject for the composite community. While the emerging discontinuous fillers offer new attributes to the next generation composites and new composite manufacturing techniques such as additive manufacturing, their orientation, however, has been much less understood and controlled as compared to that of the continuous fillers, mainly due to their small scales. Focusing on the role of filler orientation in the processing-structure–property relationships of polymer composites, the present Review critically discusses recent progress on the modelling, characterization, control and applications of the orientation of discontinuous fillers, with the advantages and disadvantages of the representative approaches analyzed. Their correlations are revealed under a proposed theoretical framework based on the rotational degree of freedom and translational degree of freedom of the fillers. Some selection criteria are proposed to guide future selection of composite manufacturing techniques for customized filler orientation. Finally, unaddressed fundamental issues and future perspectives on research and development in this field are highlighted.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101360"},"PeriodicalIF":33.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信